Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

An all-in-one chip

17.11.2008
Terahertz (THz) radiation is currently attracting considerable interest for imaging and sensing applications, because it has the potential to supersede x-rays that are more damaging. A new near-field design for terahertz radiation detection promises high-resolution imaging devices on a chip

Terahertz (THz) radiation is currently attracting considerable interest for imaging and sensing applications, because it has the potential to supersede x-rays that are more damaging. THz radiation, however, has very low energy, which makes it challenging to detect. Now Yukio Kawano and Koji Ishibashi from the RIKEN Advanced Science Institute in Wako have succeeded in developing a high-resolution and high-sensitivity THz detector on a chip.

THz radiation offers several advantages over x-rays. As the energy of light is very low, THz radiation is less damaging to materials. Similarly, THz radiation is strongly absorbed by water, which means that soft tissue of the human body can be imaged by THz rays. For these reasons, THz imaging and detection is in strong demand in fields as broad-ranging as biosensing and food inspection.

So far, the lack of compact and efficient detectors has hampered the widespread use of THz imaging schemes. The high-resolution on-chip THz detection scheme the researchers report in the journal Nature Photonics (1) is based on a technique that uses a small aperture and a probe (as a type of antenna) for THz radiation. Like planar water waves that move through a narrow slit and are converted into circular waves, THz radiation propagating through the aperture forms dense ‘evanescent waves’.

As evanescent waves decay rapidly in intensity with increasing distance from the aperture, prior designs, where the detector was away from the aperture and/or the probe, had poor detection sensitivities. “In our approach, the detector is integrated with the aperture and the probe, which enables us to directly detect the evanescent wave itself,” says Kawano commenting on the advantages of the design.

The aperture resides within a thin gold film through which the THz radiation passes. The evanescent waves are then enhanced within the narrow gap of a bow-tie shaped gold probe layer before reaching the detector. The detector itself consists of thin semiconductor films with a highly mobile layer of electrons that efficiently absorb THz radiation.

The overall integration of all components on a single chip ensures a simple and robust detection scheme. Indeed, in the first test runs, the researcher achieved high detection efficiencies with a resolution of 9 µm—significantly smaller than the THz wavelength of 215 µm, which is far beyond the possibilities of conventional optics. Therefore, simple and robust devices based on the present design are expected to have a significant impact on the further development of THz imaging technology.

1. Kawano, Y. & Ishibashi, K. An on-chip near-field terahertz probe and detector. Nature Photonics 2, 618–621 (2008).

The corresponding author for this highlight is based at the RIKEN Advanced Device Laboratory

Saeko Okada | ResearchSEA
Further information:
http://www.rikenresearch.riken.jp/research/587/
http://www.researchsea.com

Further reports about: Photonic RIKEN THz Terahertz all-in-one chip circular waves terahertz radiation

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>