Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


An all-in-one chip

Terahertz (THz) radiation is currently attracting considerable interest for imaging and sensing applications, because it has the potential to supersede x-rays that are more damaging. A new near-field design for terahertz radiation detection promises high-resolution imaging devices on a chip

Terahertz (THz) radiation is currently attracting considerable interest for imaging and sensing applications, because it has the potential to supersede x-rays that are more damaging. THz radiation, however, has very low energy, which makes it challenging to detect. Now Yukio Kawano and Koji Ishibashi from the RIKEN Advanced Science Institute in Wako have succeeded in developing a high-resolution and high-sensitivity THz detector on a chip.

THz radiation offers several advantages over x-rays. As the energy of light is very low, THz radiation is less damaging to materials. Similarly, THz radiation is strongly absorbed by water, which means that soft tissue of the human body can be imaged by THz rays. For these reasons, THz imaging and detection is in strong demand in fields as broad-ranging as biosensing and food inspection.

So far, the lack of compact and efficient detectors has hampered the widespread use of THz imaging schemes. The high-resolution on-chip THz detection scheme the researchers report in the journal Nature Photonics (1) is based on a technique that uses a small aperture and a probe (as a type of antenna) for THz radiation. Like planar water waves that move through a narrow slit and are converted into circular waves, THz radiation propagating through the aperture forms dense ‘evanescent waves’.

As evanescent waves decay rapidly in intensity with increasing distance from the aperture, prior designs, where the detector was away from the aperture and/or the probe, had poor detection sensitivities. “In our approach, the detector is integrated with the aperture and the probe, which enables us to directly detect the evanescent wave itself,” says Kawano commenting on the advantages of the design.

The aperture resides within a thin gold film through which the THz radiation passes. The evanescent waves are then enhanced within the narrow gap of a bow-tie shaped gold probe layer before reaching the detector. The detector itself consists of thin semiconductor films with a highly mobile layer of electrons that efficiently absorb THz radiation.

The overall integration of all components on a single chip ensures a simple and robust detection scheme. Indeed, in the first test runs, the researcher achieved high detection efficiencies with a resolution of 9 µm—significantly smaller than the THz wavelength of 215 µm, which is far beyond the possibilities of conventional optics. Therefore, simple and robust devices based on the present design are expected to have a significant impact on the further development of THz imaging technology.

1. Kawano, Y. & Ishibashi, K. An on-chip near-field terahertz probe and detector. Nature Photonics 2, 618–621 (2008).

The corresponding author for this highlight is based at the RIKEN Advanced Device Laboratory

Saeko Okada | ResearchSEA
Further information:

Further reports about: Photonic RIKEN THz Terahertz all-in-one chip circular waves terahertz radiation

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>