Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Charging Portable Electronics in 10 Minutes

11.06.2014

Researchers develop new architecture for lithium-ion battery anodes that far outperform the current standard


Mihri and Cengiz Ozkan, both professors in the Bourns College of Engineering.

Researchers at the University of California, Riverside Bourns College of Engineering have developed a three-dimensional, silicon-decorated, cone-shaped carbon-nanotube cluster architecture for lithium ion battery anodes that could enable charging of portable electronics in 10 minutes, instead of hours.

Lithium ion batteries are the rechargeable battery of choice for portable electronic devices and electric vehicles. But, they present problems. Batteries in electric vehicles are responsible for a significant portion of the vehicle mass. And the size of batteries in portable electronics limits the trend of down-sizing.

Silicon is a type of anode material that is receiving a lot of attention because its total charge capacity is 10 times higher than commercial graphite based lithium ion battery anodes. Consider a packaged battery full-cell. Replacing the commonly used graphite anode with silicon anodes will potentially result in a 63 percent increase of total cell capacity and a battery that is 40 percent lighter and smaller.

In a paper, Silicon Decorated Cone Shaped Carbon Nanotube Clusters for Lithium Ion Battery Anode,recently published in the journal SMALL, UC Riverside researchers developed a novel structure of three-dimensional silicon decorated cone-shaped carbon nanotube clusters architecture via chemical vapor deposition and inductively coupled plasma treatment.

Lithium ion batteries based on this novel architecture demonstrate a high reversible capacity and excellent cycling stability. The architecture demonstrates excellent electrochemical stability and irreversibility even at high charge and discharge rates, nearly 16 times faster than conventionally used graphite based anodes.

The researchers believe the ultrafast rate of charge and discharge can be attributed to two reasons, said Wei Wang, lead author of the paper.

One, the seamless connection between graphene covered copper foil and carbon nanotubes enhances the active material-current collector contact integrity which facilitates charge and thermal transfer in the electrode system.

Two, the cone-shaped architecture offers small interpenetrating channels for faster electrolyte access into the electrode which may enhance the rate performance.

Wang is a graduate student advised by Cengiz S. Ozkan, a mechanical engineering professor at UC Riverside’s Bourns College of Engineering; and Mihrimah Ozkan, an electrical engineering professor. Both of them are co-authors of the paper.

Other co-authors are Isaac Ruiz, Kazi Ahmed, Hamed Bay, Aaron George, who are all graduate students, and Johnny Wang, an undergraduate student.

Media Contact


Tel: (951) 827-1287
E-mail: sean.nealon@ucr.edu
Twitter: seannealon

Sean Nealon | Eurek Alert!
Further information:
http://www.ucr.edu
http://ucrtoday.ucr.edu/23176

Further reports about: Charging Electronics Engineering Ion Lithium Nanotube Portable Silicon battery capacity connection copper graphene

More articles from Power and Electrical Engineering:

nachricht Imaging Fuel Injectors with Neutrons
17.09.2014 | Oak Ridge National Laboratory

nachricht Study sheds new light on why batteries go bad
15.09.2014 | DOE/SLAC National Accelerator Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Anzeige

Anzeige

Event News

"Start-ups and spin-offs funding – Public and private policies", 14th October 2014

12.09.2014 | Event News

BALTIC 2014: Baltic Sea Geologists meet in Warnemünde

03.09.2014 | Event News

IT security in the digital society

27.08.2014 | Event News

 
Latest News

No sedative necessary: Scientists discover new “sleep node” in the brain

19.09.2014 | Life Sciences

Sensing Neuronal Activity With Light

19.09.2014 | Life Sciences

Miranda: An Icy Moon Deformed by Tidal Heating

19.09.2014 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>