Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Charging ahead: University of Houston team revealing secrets of electricity-producing materials

29.07.2009
Researchers press on in their mission to power nanodevices of tomorrow

Much like humans, materials are capable of some pretty remarkable things when they're placed under pressure. In fact, under the right conditions, materials can even produce electricity.

Driven by the vision of our society one day being basically self-propelled, a team of University of Houston scientists has set out to both amplify and provoke that potential in materials known as piezoelectrics, which naturally produce electricity when literally subjected to strain.

The goal is to use piezoelectrics to create nanodevices that can power electronics, such as cell phones, MP3 players and even biomedical implants.

"Nanodevices using piezoelectric materials will be light, environmentally friendly and draw on inexhaustible energy supplies," says associate professor Pradeep Sharma, one of the creative minds at the Cullen College of Engineering running two projects on piezoelectrics. "Imagine a sensor on the wing of a plane or a satellite. Do we really want to change its battery every time its power source gets exhausted? Hard-to-access devices could be self-powered."

Piezoelectric materials convert mechanical energy into electrical energy, Sharma explains.

"Indeed, gas lighters used in most homes are based on this," he says. "These future piezoelectric nanodevices will also generate an electrical current in response to mechanical stimuli. Then, the energy will be stored in batteries or, even better, in nanocapacitors for use when needed."

Although piezoelectrics have been used for many years, Sharma's team is exploring new possibilities by beefing up the effect in natural piezoelectrics. Doing so requires understanding the phenomenon that spurs piezoelectricity, known as "flexoelectricity."

"Flexoelectricity, at the nanoscale, allows you to coax ordinary material to behave like a piezoelectric one. Perhaps more importantly, this phenomenon exists in materials that are already piezoelectric. You can make the effect even larger," Sharma says.

For example, the piezoelectricity in barium titanate can be increased by 300 percent when the material is reduced to a 2-nanometer-beam and pressure is applied. "Thus, you'll take an ordinary piezoelectric material and really give it some juice," he says.

Sharma underscores the flexoelectric effect is a function of size – and the smaller the better, at least for generating piezoelectric power. Materials with nanoscale features – such as nanoscale thin plates stacked on each other or materials with particles or holes the size of a few nanometers – exhibit a much larger flexoelectric effect, he says.

Ramanan Krishnamoorti, chairman of the department of chemical and biomolecular engineering, is working with Sharma to embed classes of nanostructures in polymers to create unusual types of piezoelectrics.

Meanwhile, Sharma and professor Ken White recently reported that the electrical activity caused by flexoelectricity also affects a material's resiliency. They tested their theory – that the elasticity of a material would be quite altered by flexoelectricity-caused electrical activity – by poking the material with a sophisticated needle.

"We basically predicted that when you poke it, because of this electrical activity, depending upon how big a crater you create, your elastic behavior will change. It's not supposed to. Ordinarily, whether you make a big crater or small crater, if you calculate how stiff it is or soft it is, it'll give you the same answer – a constant," Sharma says.

White and Sharma conducted several experiments on single crystals of materials.

"By monitoring the stiffness of the material as the crater became larger and larger," White says, "we discovered a change in elasticity relative to size, which could only be explained by flexoelectric effect."

Though a fair amount of research on piezoelectrics has been done, White says, the fabrication of piezoelectric nanostructures remains challenging. The amount of power that can be harvested is still too low to actually power wearable devices, he says, unless efficient electric storage solutions, like nanocapacitors, also are conceived.

Sharma says he would like to see wasted energy be harvested from a variety of sources.

"In principle, any human activities – for example, walking, jumping, swimming – will produce a certain amount of energy," he says, and could be made into electricity by piezoelectric nanostructures in shoes or in backpacks.

White says it's a matter of controlling materials' structures to the point at which considerably more power can be harvested from common activities.

"An enormous benefit can be expected – in everything from soldiers in the field, to police on the street, to air and ground vehicles – in the form of locally powered devices," White explains.

Sharma says the environment contains plenty of waste energy that can be harnessed into useful energy to make ours a "self-powered autonomous society."

"Recent technological advances and breakthroughs play an important role toward achieving that goal, but we need to be patient," he says. "Quantum mechanics, the basis of modern electronics, was 'discovered' in the early 1900s. Think how long it has taken for us to exploit that."

About the University of Houston

The University of Houston, Texas' premier metropolitan research and teaching institution, is home to more than 40 research centers and institutes and sponsors more than 300 partnerships with corporate, civic and governmental entities. UH, the most diverse research university in the country, stands at the forefront of education, research and service with more than 36,000 students.

About the Cullen College of Engineering

The Cullen College of Engineering at UH has produced five U.S. astronauts, 10 members of the National Academy of Engineering, and degree programs that have ranked in the top 10 nationally. With more than 2,600 students, the college offers accredited undergraduate and graduate degrees in biomedical, chemical, civil and environmental, electrical and computer, industrial, and mechanical engineering. It also offers specialized programs in aerospace, materials, petroleum engineering and telecommunications.

For more information about UH, visit the university's Newsroom at http://www.uh.edu/news-events/.

To receive UH science news via e-mail, visit http://www.uh.edu/news-events/mailing-lists/sciencelistserv.php.

Angela Hopp | EurekAlert!
Further information:
http://www.uh.edu

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>