Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Channelling waste heat in microprocessors in new directions

27.07.2011
What happens when you heat up a magnet? When a material is heated, the temperature differential in the electrons generates an electrical voltage known as thermopower or the Seebeck effect.

An international team of researchers at the Universities of Göttingen, Bielefeld and Giessen, along with the Massachusetts Institute of Technology (MIT) in the USA, has now developed a new method that influences the electron’s thermopower in the tunnel junction by directly changing magnetisation. This way, they can control the conversion of heat into electrical energy. The results may contribute to the future development of novel, economical microprocessors.


Schematic diagram of how thermopower in the magnetic tunnel junction is switched via antiparallel (AP) or parallel (P) magnetisation.
Göttingen University

DFG funds additional collaborative research to the tune of one million euros

Spin caloritronics is a new area of research: What happens when you heat up a magnet? When a material is heated, the temperature differential in the electrons generates an electrical voltage known as thermopower or the Seebeck effect. Electronic components made of magnetic materials – consisting of two magnetic layers separated by a thin oxide film only a few atomic layers thick – for example, are used as reading heads for hard drives. Current research focuses on the use of such magnetic tunnel junctions as nonvolatile memory elements in processors where data are preserved without an energy supply. An international team of researchers at the Universities of Göttingen, Bielefeld and Giessen, along with the Massachusetts Institute of Technology (MIT) in the USA, has now developed a new method that influences the electron’s thermopower in the tunnel junction by directly changing magnetisation. This way, they can control the conversion of heat into electrical energy. The results may contribute to the future development of novel, economical microprocessors and were published on Sunday, July 24, 2011 in the online issue of “Nature Materials“.

Elementary particles, many atomic nuclei and atoms with certain electron configurations have what is called spin – defined as the rotation of a body around its own axis. That enables alternative, spin-based methods of electronic data processing – called “spin electronics“. New synergies are created by merging the fields of spin electronics and the energy conversion of novel materials. A Japanese team of researchers recently showed that tunnel barriers enable thermal spin injection into the semiconductor silicon.

The team of researchers around the Göttingen physicist Professor Markus Münzenberg has now used laser power to heat up magnetic tunnel junctions and thereby discovered a novel effect: Thermopower was created during spin transport through the thin oxide layer (tunnel barrier) the heated up electrons traverse. They could raise or lower the thermopower by changing the magnetisation. In doing so, they influenced the thermopower of the whole magnetic tunnel junction. They predict that a change in thermopower of up to 1000 % is possible. This newly discovered effect involving the switching of thermopower in magnetic tunnel junctions was dubbed the magneto-Seebeck effect. “This has released the potential for us to locally control energy conversion in the tiniest of junctions and, in the future, for example, to channel back into the computer system the energy generated in microprocessors that previously went unutilised, or computer chips working with waste heat only” said Prof. Münzenberg, who leads a research group at the 1st Institute of Physics of Göttingen University. Since July 2011, the collaborative research of these working groups at the three German universities has been part of the priority programme titled “Spin Caloric Transport (SpinCat) – SPP 1538“, funded by the German Research Foundation (DFG) to the tune of over one million euros.

Original publication:
M. Walter, J. Walowski, V. Zbarsky, M. Münzenberg et al, Seebeck effect in magnetic tunnel junctions, Nature Materials, published online 24 July 2011, DOI: 10.1038/NMAT3076
Contact address:
Professor Markus Münzenberg
Georg-August University Göttingen
Faculty of Physics – Physical Institute I
Friedrich-Hund-Platz 1, 37077 Göttingen
Phone (0551) 39-7604, Fax (0551) 39-12229
E-mail: mmuenze@gwdg.de

Dr. Bernd Ebeling | Uni Göttingen
Further information:
http://www.uni-goettingen.de/de/99100.html

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>