Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Channelling waste heat in microprocessors in new directions

27.07.2011
What happens when you heat up a magnet? When a material is heated, the temperature differential in the electrons generates an electrical voltage known as thermopower or the Seebeck effect.

An international team of researchers at the Universities of Göttingen, Bielefeld and Giessen, along with the Massachusetts Institute of Technology (MIT) in the USA, has now developed a new method that influences the electron’s thermopower in the tunnel junction by directly changing magnetisation. This way, they can control the conversion of heat into electrical energy. The results may contribute to the future development of novel, economical microprocessors.


Schematic diagram of how thermopower in the magnetic tunnel junction is switched via antiparallel (AP) or parallel (P) magnetisation.
Göttingen University

DFG funds additional collaborative research to the tune of one million euros

Spin caloritronics is a new area of research: What happens when you heat up a magnet? When a material is heated, the temperature differential in the electrons generates an electrical voltage known as thermopower or the Seebeck effect. Electronic components made of magnetic materials – consisting of two magnetic layers separated by a thin oxide film only a few atomic layers thick – for example, are used as reading heads for hard drives. Current research focuses on the use of such magnetic tunnel junctions as nonvolatile memory elements in processors where data are preserved without an energy supply. An international team of researchers at the Universities of Göttingen, Bielefeld and Giessen, along with the Massachusetts Institute of Technology (MIT) in the USA, has now developed a new method that influences the electron’s thermopower in the tunnel junction by directly changing magnetisation. This way, they can control the conversion of heat into electrical energy. The results may contribute to the future development of novel, economical microprocessors and were published on Sunday, July 24, 2011 in the online issue of “Nature Materials“.

Elementary particles, many atomic nuclei and atoms with certain electron configurations have what is called spin – defined as the rotation of a body around its own axis. That enables alternative, spin-based methods of electronic data processing – called “spin electronics“. New synergies are created by merging the fields of spin electronics and the energy conversion of novel materials. A Japanese team of researchers recently showed that tunnel barriers enable thermal spin injection into the semiconductor silicon.

The team of researchers around the Göttingen physicist Professor Markus Münzenberg has now used laser power to heat up magnetic tunnel junctions and thereby discovered a novel effect: Thermopower was created during spin transport through the thin oxide layer (tunnel barrier) the heated up electrons traverse. They could raise or lower the thermopower by changing the magnetisation. In doing so, they influenced the thermopower of the whole magnetic tunnel junction. They predict that a change in thermopower of up to 1000 % is possible. This newly discovered effect involving the switching of thermopower in magnetic tunnel junctions was dubbed the magneto-Seebeck effect. “This has released the potential for us to locally control energy conversion in the tiniest of junctions and, in the future, for example, to channel back into the computer system the energy generated in microprocessors that previously went unutilised, or computer chips working with waste heat only” said Prof. Münzenberg, who leads a research group at the 1st Institute of Physics of Göttingen University. Since July 2011, the collaborative research of these working groups at the three German universities has been part of the priority programme titled “Spin Caloric Transport (SpinCat) – SPP 1538“, funded by the German Research Foundation (DFG) to the tune of over one million euros.

Original publication:
M. Walter, J. Walowski, V. Zbarsky, M. Münzenberg et al, Seebeck effect in magnetic tunnel junctions, Nature Materials, published online 24 July 2011, DOI: 10.1038/NMAT3076
Contact address:
Professor Markus Münzenberg
Georg-August University Göttingen
Faculty of Physics – Physical Institute I
Friedrich-Hund-Platz 1, 37077 Göttingen
Phone (0551) 39-7604, Fax (0551) 39-12229
E-mail: mmuenze@gwdg.de

Dr. Bernd Ebeling | Uni Göttingen
Further information:
http://www.uni-goettingen.de/de/99100.html

More articles from Power and Electrical Engineering:

nachricht Open, flexible assembly platform for optical systems
24.01.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>