Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Changing temperature powers sensors in hard-to-reach places


A centuries-old clock built for a king is the inspiration for a group of computer scientists and electrical engineers who hope to harvest power from the air.

The clock, powered by changes in temperature and atmospheric pressure, was invented in the early 17th century by a Dutch builder. Three centuries later, Swiss engineer Jean Leon Reutter built on that idea and created the Atmos mechanical clock that can run for years without needing to be wound manually.

Now, University of Washington researchers have taken inspiration from the clock’s design and created a power harvester that uses natural fluctuations in temperature and pressure as its power source. The device harvests energy in any location where these temperature changes naturally occur, powering sensors that can check for water leaks or structural deficiencies in hard-to-reach places and alerting users by sending out a wireless signal.

“Pressure changes and temperature fluctuations happen around us all the time in the environment, which could provide another source of energy for certain applications,” said Shwetak Patel, a UW associate professor of computer science and engineering and of electrical engineering.

The UW team will present its research at the Association for Computing Machinery’s International Joint Conference on Pervasive and Ubiquitous Computing this month in Seattle.

The system works like this: A metal bellows about the size of a cantaloupe is filled with a temperature-sensitive gas. When the gas heats and cools in response to the outside air temperature, it expands and contracts, causing the bellows to do the same. Small, cantilever motion harvesters are placed on the bellows and convert this kinetic energy into electrical energy. This powers sensors that also are placed on the bellows, and data collected by the sensors is sent wirelessly to a receiver.

A number of battery-free technologies exist that are powered by solar and ambient radio frequency waves. The researchers say this technology would be useful in places where sun and radio waves can’t always penetrate, such as inside walls or bridges and below ground where there might be at least small temperature fluctuations.

For instance, the device could be placed in an attic or inside a wall, and sensors would be tuned to check for water leaks. Similarly, when used inside a bridge, the sensors could detect any cracks forming or structural deficiencies. In both cases, the sensors would send a signal to the nearby powered receiver.

A temperature change of only 0.25 degrees Celsius creates enough energy to power the sensor node to read and send data wirelessly to a receiver 5 meters away. That means any slight shift in an office building’s air conditioning or the natural outside air temperature during the course of a day would be more than enough to activate the chemical in the bellows.

The UW’s technology uses temperature changes over time as its power source. Devices called thermoelectric generators also leverage varying temperatures for power, but these instruments require a temperature difference at an exact moment, such as in a place where one side is hot and the other is cool.

The researchers have filed patents for the technology and plan to make it smaller, about the size of a D battery. A future version would include four chemicals that activate in different temperature ranges so the same device could be used in various climates.

“I think our approach is unique,” said Chen Zhao, lead author and a UW doctoral student in electrical engineering. “We provide a simple design that includes some 3-D printed and off-the-shelf components. With our Web page and source code, others can download and build their own power harvesters.”

Other members of the research team are Joshua Smith, a UW associate professor of computer science and engineering and of electrical engineering; Sam Yisrael, an undergraduate student in electrical engineering; Sidhant Gupta, a former UW doctoral student; and Eric Larson, an assistant professor at Southern Methodist University and former UW doctoral student.

This research was funded by the Intel Science and Technology Center for Pervasive Computing at the UW and the Sloan Foundation.


For more information, contact the research team at

Michelle Ma | Eurek Alert!
Further information:

Further reports about: 3-D Computing Devices Pervasive energy inside pressure temperature waves

More articles from Power and Electrical Engineering:

nachricht A Light Touch May Help Animals and Robots Move on Sand and Snow
12.10.2015 | Georgia Institute of Technology

nachricht Discovery about new battery overturns decades of false assumptions
07.10.2015 | Oregon State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Secure data transfer thanks to a single photon

Physicists of TU Berlin and mathematicians of MATHEON are so successful that even the prestigious journal “Nature Communications” reported on their project.

Security in data transfer is an important issue, and not only since the NSA scandal. Sometimes, however, the need for speed conflicts to a certain degree with...

Im Focus: A Light Touch May Help Animals and Robots Move on Sand and Snow

Having a light touch can make a hefty difference in how well animals and robots move across challenging granular surfaces such as snow, sand and leaf litter. Research reported October 9 in the journal Bioinspiration & Biomimetics shows how the design of appendages – whether legs or wheels – affects the ability of both robots and animals to cross weak and flowing surfaces.

Using an air fluidized bed trackway filled with poppy seeds or glass spheres, researchers at the Georgia Institute of Technology systematically varied the...

Im Focus: Reliable in-line inspections of high-strength automotive body parts within seconds

Nondestructive material testing (NDT) is a fast and effective way to analyze the quality of a product during the manufacturing process. Because defective materials can lead to malfunctioning finished products, NDT is an essential quality assurance measure, especially in the manufacture of safety-critical components such as automotive B-pillars. NDT examines the quality without damaging the component or modifying the surface of the material. At this year's Blechexpo trade fair in Stuttgart, Fraunhofer IZFP will have an exhibit that demonstrates the nondestructive testing of high-strength automotive body parts using 3MA. The measurement results are available in a matter of seconds.

To minimize vehicle weight and fuel consumption while providing the highest level of crash safety, automotive bodies are reinforced with elements made from...

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Smart clothing, mini-eyes, and a virtual twin – Artificial Intelligence at ICT 2015

13.10.2015 | Trade Fair News

Listening to the Extragalactic Radio

13.10.2015 | Physics and Astronomy

Penn study stops vision loss in late-stage canine X-linked retinitis pigmentosa

13.10.2015 | Health and Medicine

More VideoLinks >>>