Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Changing temperature powers sensors in hard-to-reach places

04.09.2014

A centuries-old clock built for a king is the inspiration for a group of computer scientists and electrical engineers who hope to harvest power from the air.

The clock, powered by changes in temperature and atmospheric pressure, was invented in the early 17th century by a Dutch builder. Three centuries later, Swiss engineer Jean Leon Reutter built on that idea and created the Atmos mechanical clock that can run for years without needing to be wound manually.

Now, University of Washington researchers have taken inspiration from the clock’s design and created a power harvester that uses natural fluctuations in temperature and pressure as its power source. The device harvests energy in any location where these temperature changes naturally occur, powering sensors that can check for water leaks or structural deficiencies in hard-to-reach places and alerting users by sending out a wireless signal.

“Pressure changes and temperature fluctuations happen around us all the time in the environment, which could provide another source of energy for certain applications,” said Shwetak Patel, a UW associate professor of computer science and engineering and of electrical engineering.

The UW team will present its research at the Association for Computing Machinery’s International Joint Conference on Pervasive and Ubiquitous Computing this month in Seattle.

The system works like this: A metal bellows about the size of a cantaloupe is filled with a temperature-sensitive gas. When the gas heats and cools in response to the outside air temperature, it expands and contracts, causing the bellows to do the same. Small, cantilever motion harvesters are placed on the bellows and convert this kinetic energy into electrical energy. This powers sensors that also are placed on the bellows, and data collected by the sensors is sent wirelessly to a receiver.

A number of battery-free technologies exist that are powered by solar and ambient radio frequency waves. The researchers say this technology would be useful in places where sun and radio waves can’t always penetrate, such as inside walls or bridges and below ground where there might be at least small temperature fluctuations.

For instance, the device could be placed in an attic or inside a wall, and sensors would be tuned to check for water leaks. Similarly, when used inside a bridge, the sensors could detect any cracks forming or structural deficiencies. In both cases, the sensors would send a signal to the nearby powered receiver.

A temperature change of only 0.25 degrees Celsius creates enough energy to power the sensor node to read and send data wirelessly to a receiver 5 meters away. That means any slight shift in an office building’s air conditioning or the natural outside air temperature during the course of a day would be more than enough to activate the chemical in the bellows.

The UW’s technology uses temperature changes over time as its power source. Devices called thermoelectric generators also leverage varying temperatures for power, but these instruments require a temperature difference at an exact moment, such as in a place where one side is hot and the other is cool.

The researchers have filed patents for the technology and plan to make it smaller, about the size of a D battery. A future version would include four chemicals that activate in different temperature ranges so the same device could be used in various climates.

“I think our approach is unique,” said Chen Zhao, lead author and a UW doctoral student in electrical engineering. “We provide a simple design that includes some 3-D printed and off-the-shelf components. With our Web page and source code, others can download and build their own power harvesters.”

Other members of the research team are Joshua Smith, a UW associate professor of computer science and engineering and of electrical engineering; Sam Yisrael, an undergraduate student in electrical engineering; Sidhant Gupta, a former UW doctoral student; and Eric Larson, an assistant professor at Southern Methodist University and former UW doctoral student.

This research was funded by the Intel Science and Technology Center for Pervasive Computing at the UW and the Sloan Foundation.

###

For more information, contact the research team at temperature-harvester@uw.edu.

Michelle Ma | Eurek Alert!
Further information:
http://www.washington.edu/news/2014/09/03/changing-temperature-powers-sensors-in-hard-to-reach-places/

Further reports about: 3-D Computing Devices Pervasive energy inside pressure temperature waves

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>