Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chance for competition in photovoltaic industry

02.10.2014

Low cost highly efficient industrial solar cells

With 8 to 10 Cents per kilowatt hour, the production cost of photovoltaic electricity in Germany ranges below electricity cost from gas-fired or coal-fired power plants. Photovoltaic electricity will be even cheaper for high efficient solar cells and modules manufactured by laser techniques.

One year ago, scientists from the Institute for Photovoltaics (ipv) of the University of Stuttgart demonstrated 22 % efficiency by fabricating back-contacted solar cells by laser processes. This world record efficiency was obtained on small 20 mm x 20 mm large cells. In a new project, financed by the German Federal Ministry of Economic affairs and Energy, the ipv will now scale up all their processes to industrial cells of 125 mm x 125 mm area with 22 % efficiency.

Standard silicon solar cells feature silver based front side contacts which shadow parts of the cell. Under the metallic contacts no radiation will reach the cell, no electrons will be generated; thus, the efficiency is considerably reduced. In case of back contacted solar cells, as the name implies, all contacts are located on the backside. The front side rests bare and without hindrance for energy production.

However, conventional back contact cells suffer from high production cost: Fine structures and tedious work is required to supply many doped areas and contacts on the backside. In standard silicon solar cells between the front and the back, two differently doped areas induce an electric field, the so-called large area pn-junction.

Usually the doping is done by a single large-area diffusion of impurity atoms, like boron or phosphor, in silicon at high temperatures. Back contacted solar cells, instead, need a lot but tiny pn-junctions on the backside. Thus, complex and expensive masking steps are necessary in cell processing.

To solve this problem, researchers of the ipv developed laser processes for the production of back contacted solar cells without any masking. Lasers allow to locally structure and contact the doped areas with a resolution of less than a three-hundredth millimeter. Compared to other processes for back contact solar cells, the laser-process at ipv is fast, simple, and cost-efficient but yields highly efficient cells.

Therefore, this project is able to contribute to a restart of the German photovoltaic (PV) industry: Large-area PV modules with efficiencies above 20 % will be produced at costs below 50 Cent per Watt. Such German high tech modules, produced under German standards, are able to compete with the much lower efficient modules produced in Far East - highly subsidized and manufactured under low social and environmental standards.

Further informations:
Prof. Dr. J. H. Werner, University of Stuttgart, Institute for Photovoltaics, Tel. +49-711-685-67141,
E-Mail: juergen.werner (at) ipv.uni-stuttgart.de
Dr. Renate Zapf-Gottwick, University of Stuttgart, Institute for Photovoltaics, Tel. +49-711-685-69225,
E-Mail: renate.zapf-gottwick (at) ipv.uni-stuttgart.de
Andrea Mayer-Grenu, University of Stuttgart, Dep. Hochschulkommunikation, Tel. 0711/685-82176,
E-Mail: andrea.mayer-grenu (at) hkom.uni-stuttgart.de

Andrea Mayer-Grenu | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-stuttgart.de/

More articles from Power and Electrical Engineering:

nachricht Stanford researchers develop a new type of soft, growing robot
21.07.2017 | Stanford University

nachricht Team develops fast, cheap method to make supercapacitor electrodes
18.07.2017 | University of Washington

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>