Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ceramic Transformer Integrates Power Supply Unit

17.06.2013
Siemens scientists have developed new kinds of ceramics in which they can embed transformers.

The new development allows power supply transformers to be reduced to one fifth of their current size so that the normally separate switched-mode power supply units of light-emitting diodes can be integrated into the module's heat sink.



The new technology was developed in cooperation with industrial and research partners who worked together on a joint project for the activation of LEDs by means of LTCC-ferrite modules (ALFerMo).

Components for the control and automation of industrial equipment, building technology, traffic systems, and light-emitting diodes (LEDs) require driver circuits so that they can be activated and supplied with electricity. In many cases, the size of these modules makes it impossible for the systems to have a light and simple structure. If the circuits could be made smaller, they could be embedded in the device. However, transformers pose an obstacle to miniaturization due to their magnetic ferrite core and metallic windings. As a result, transformer size is frequently the factor that determines a module's size.

Using a very bright arrangement of 16 Osram OSLON light-emitting diodes as an example, the ALFerMo consortium has demonstrated how a switched-mode power supply unit can be installed in cavities in the heat sink. Experts at Siemens' global Corporate Technology unit used two techniques to miniaturize the transformer. First, they quadrupled the switching frequency, because the higher the switching frequency, the smaller the transformer can be.

The researchers also developed a layered system of magnetic ceramic films. This allows the ferrite core and the windings to be easily incorporated into a ceramic circuit board. This enabled the transformer to be reduced to one fifth of its original size so that the driver circuit could be installed into an LED heat sink that is ten centimeters wide and five centimeters high. As a result, the LED module no longer requires a separate power supply unit even though it is still as bright as before.

The ALFerMo project expanded the range of possibilities for integrating circuit boards into the compact, modular power electronics assemblies of the future. Smart control systems of this type will make buildings, energy plants, and manufacturing facilities more competitive.

The researchers are now investigating the possibility of applying this technique in the most widespread types of epoxy circuit boards as well as in non-lighting systems. The ALFerMo project is part of the German Research Ministry's Power Electronics for Energy Efficiency Enhancement (LES) program. As part of its high-technology strategy, the German government provided the project with funding amounting to €2.65 million until the end of May 2013.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

More articles from Power and Electrical Engineering:

nachricht Organic-inorganic heterostructures with programmable electronic properties
30.03.2017 | Technische Universität Dresden

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>