Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Catching some rays: Organic solar cells make a leap forward

Drawn together by the force of nature, but pulled apart by the force of man – it sounds like the setting for a love story, but it is also a basic description of how scientists have begun to make more efficient organic solar cells.
At the atomic level, organic solar cells function like the feuding families in Romeo and Juliet. There’s a strong natural attraction between the positive and negative charges that a photon generates after it strikes the cell, but in order to capture the energy, these charges need to be kept separate.

When these charges are still bound together, they are known to scientists as an exciton. “The real question that this work tries to answer is how to design a material that will make splitting the exciton require less energy,” said senior chemist Lin Chen of the U.S. Department of Energy’s (DOE) Argonne National Laboratory.

Excitons can be thought of as a sort of “quasiparticle,” Chen said, because they exhibit certain unique behaviors. When the two charged regions of the exciton – the electron and a region known as a “hole” – are close together, they are difficult to pry apart.

“The closer the hole and the electron regions are inside an exciton, the more likely they are to recombine without generating electricity,” Chen said.

When energy is added to the system, however, the charges begin to separate, rendering the electrons and holes completely free and eventually allowing for the possibility of generating current and extracting electricity

“The closer the hole and the electron regions are inside an exciton, the more likely they are to recombine without generating electricity,” Chen said. “But if they are already ‘pre-separated,’ or polarized, the more likely they are to escape from this potential trap and become effective charge carriers.”

In the new experiment, Chen and her colleagues examined how four different molecules in the polymer layer in the middle of a solar cell generated different exciton dynamics. They discovered that more heavily polarized excitons yielded more efficient polymer-based solar cells.

“If the conventional exciton, right after it is generated, contains the hole and electron in almost the same location, these new materials are generating an exciton that is much more polarized at the beginning,” Chen said. Currently, the collaborative team is exploring new materials for high-efficiency organic solar cells based on these findings.

Organic solar cells still have a ways to go to get close to the efficiency of their inorganic, silicon-based competitors, but they remain much more attractive from a cost perspective. Further research into the electronic dynamics of organic photovoltaics is essential to improving their efficiency and thus making solar power cost-competitive with conventional energy sources, Chen said.

The work has been recently published in the Journal of the American Chemical Society.

Chen’s work on organic solar cells represents one of several avenues of solar energy research currently underway as part of the Argonne-Northwestern Solar Energy Research Center (ANSER), a collaborative enterprise between Argonne and Northwestern University that seeks to investigate a number of possible improvements to the current generation of photovoltaic devices. ANSER is one of 46 Energy Frontier Research Centers established in 2009 by DOE’s Office of Science at universities, national laboratories, and other institutions across the nation to advance basic research on energy.

Argonne National Laboratory seeks solutions to pressing national problems in science and technology. The nation's first national laboratory, Argonne conducts leading-edge basic and applied scientific research in virtually every scientific discipline. Argonne researchers work closely with researchers from hundreds of companies, universities, and federal, state and municipal agencies to help them solve their specific problems, advance America's scientific leadership and prepare the nation for a better future. With employees from more than 60 nations, Argonne is managed by UChicago Argonne, LLC for the U.S. Department of Energy's Office of Science.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit

Jared Sagoff | EurekAlert!
Further information:

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

Im Focus: Radar for navigation support from autonomous flying drones

At the ILA Berlin, hall 4, booth 202, Fraunhofer FHR will present two radar sensors for navigation support of drones. The sensors are valuable components in the implementation of autonomous flying drones: they function as obstacle detectors to prevent collisions. Radar sensors also operate reliably in restricted visibility, e.g. in foggy or dusty conditions. Due to their ability to measure distances with high precision, the radar sensors can also be used as altimeters when other sources of information such as barometers or GPS are not available or cannot operate optimally.

Drones play an increasingly important role in the area of logistics and services. Well-known logistic companies place great hope in these compact, aerial...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

International Virtual Reality Conference “IEEE VR 2018” comes to Reutlingen, Germany

08.03.2018 | Event News

Latest News

Wandering greenhouse gas

16.03.2018 | Earth Sciences

'Frequency combs' ID chemicals within the mid-infrared spectral region

16.03.2018 | Physics and Astronomy

Biologists unravel another mystery of what makes DNA go 'loopy'

16.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>