Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Carbon Foam: The Key Ingredient of a Greener Battery?

21.11.2011
A lighter, greener, cheaper, longer-lasting battery. Who wouldn’t want that?

Researchers at Michigan Technological University are working on it. Actually, their design is a twist on what’s called an asymmetric capacitor, a new type of electrical storage device that’s half capacitor, half battery. It may be a marriage made in heaven.

Capacitors store an electrical charge physically and have important advantages: they are lightweight and can be recharged (and discharged) rapidly and almost indefinitely. Plus, they generate very little heat, an important issue for electronic devices. However, they can only make use of about half of their stored charge.

Batteries, on the other hand, store electrical energy chemically and can release it over longer periods at a steady voltage. And they can usually store more energy than a capacitor. But batteries are heavy and take time to charge up, and even the best can’t be recharged forever.

Enter asymmetric capacitors, which bring together the best of both worlds. On the capacitor side, energy is stored by electrolyte ions that are physically attracted to the charged surface of a carbon anode. Combined with a battery-style cathode, this design delivers nearly double the energy of a standard capacitor.

Now, Michigan Tech researchers have incorporated a novel material on the battery side to make an even better asymmetric capacitor.

Their cathode relies on nickel oxyhydroxide, the same material used in rechargeable nickel-cadmium or nickel-metal hydride batteries. “In most batteries that contain nickel oxyhydroxide, metallic nickel serves as a mechanical support and a current collector,” said chemistry professor Bahne Cornilsen, who had been studying nickel electrodes for a number of years, initially with NASA support. A few years ago, the Michigan Tech team had a chance to experiment with something different: carbon foam. He suggested replacing the nickel with carbon foam.

Carbon foam has advantages over nickel. “It’s lighter and cheaper, so we thought maybe we could use it as a scaffold, filling its holes with nickel oxyhydroxide,” said Tony Rogers, associate professor of chemical engineering.

Carbon foam has a lot of holes to fill. “The carbon foam we are using has 72 percent porosity,” Rogers said. “That means 72 percent of its volume is empty space, so there’s plenty of room for the nickel oxyhydroxide. The carbon foam could also be made of renewable biomass, and that’s attractive.”

But how many times can you recharge their novel asymmetric capacitor? Nobody knows; so far, they haven’t been able to wear it out. “We’ve achieved over 127,000 cycles,” Rogers said.

Other asymmetric capacitors have similar numbers, but none have the carbon-foam edge that could make them even more desirable to consumers.

“Being lighter would give it a real advantage in handheld power tools and consumer electronics,” said Rogers. Hybrid electric vehicles are another potential market, since an asymmetric capacitor can charge and discharge more rapidly than a normal battery, making it useful for regenerative braking.

The group has applied for a patent on their new technology. Their research was funded by funded by the US Department of Energy, the Michigan Universities Commercialization Initiative, the Michigan Tech Research Excellence Fund and the Michigan Space Grant Consortium.

Michigan Tech chemical engineering professor Michael Mullins is also a member of the research team. Graduate students contributing to the project are PhD graduate Matthew Chye and PhD student Wen Nee Yeo of the chemical engineering department and MS student Padmanaban Sasthan Kuttipillai and PhD student Jinjin Wang of the chemistry department.

Marcia Goodrich | Newswise Science News
Further information:
http://www.mtu.edu

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Plant escape from waterlogging

17.10.2017 | Life Sciences

Study suggests oysters offer hot spot for reducing nutrient pollution

17.10.2017 | Life Sciences

Breaking: the first light from two neutron stars merging

17.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>