Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Canadian research team reports major breakthrough in lithium battery technology

20.05.2009
An NSERC-funded lab at the University Of Waterloo has laid the groundwork for a lithium battery that can store and deliver more than three times the power of conventional lithium ion batteries.

The research team of professor Linda Nazar, graduate student David Xiulei Ji and postdoctoral fellow Kyu Tae Lee are one of the first to demonstrate robust electrochemical performance for a lithium-sulphur battery. The finding is reported today in the on-line issue of Nature Materials.

The prospect of lithium-sulphur batteries has tantalized chemists for two decades, and not just because successfully combining the two chemistries delivers much higher energy densities. Sulphur is cheaper than many other materials currently used in lithium batteries.

It has always showed great promise as the ideal partner for a safe, low cost, long lasting rechargeable battery, exactly the kind of battery needed for energy storage and transportation in a low carbon emission energy economy.

"The difficult challenge was always the cathode, the part of the battery that stores and releases electrons in the charge and recharge cycles," said Dr. Nazar. "To enable a reversible electrochemical reaction at high current rates, the electrically-active sulphur needs to remain in the most intimate contact with a conductor, such as carbon."

The Canadian research team leap-frogged the performance of other carbon-sulphur combinations by tackling the contact issue at the nanoscale level. Although they say the same approach could be used with other materials, for their proof of concept study they chose a member of a highly structured and porous carbon family called mesoporous carbon. At the nanoscale level, this type of carbon has a very uniform pore diameter and pore volume.

Using a nanocasting method, the team assembled a structure of 6.5 nanometre thick carbon rods separated by empty three to four nanometre wide channels. Carbon microfibres spanning the empty channels kept the voids open and prevented collapse of the architecture.

Filling the tiny voids proved simple. Sulphur was heated and melted. Once in contact with the carbon, it was drawn or imbibed into the channels by capillary forces, where it solidified and shrunk to form sulphur nanofibres. Scanning electron microscope sections revealed that all the spaces were uniformly filled with sulphur, exposing an enormous surface area of the active element to carbon and driving the exceptional test results of the new battery.

"This composite material can supply up to nearly 80 percent of the theoretical capacity of sulphur, which is three times the energy density of lithium transition metal oxide cathodes, at reasonable rates with good cycling stability," said Dr. Nazar.

What is more, the researchers say, the high capacity of the carbon to incorporate active material opens the door for similar "imbibed" composites that could have applications in many areas of materials science.

The research team continues to study the material to work out remaining challenges and refine the cathode's architecture and performance.

Dr. Nazar said a patent has been filed, and she is reviewing options for commercialization and practical applications.

Contact:

Linda Nazar, Canada Research Chair, University of Waterloo
519-888-4567, ext. 84637 or lfnazar@uwaterloo.ca
NSERC contact:
Arnet Sheppard, 613-995-5997 or arnet.sheppard@nserc-crsng.gc.ca

Linda Nazar | EurekAlert!
Further information:
http://www.uwaterloo.ca
http://www.nserc-crsng.gc.ca

More articles from Power and Electrical Engineering:

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

nachricht IHP presents the fastest silicon-based transistor in the world
05.12.2016 | IHP - Leibniz-Institut für innovative Mikroelektronik

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>