Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Camera Makes Seeing the “Invisible” Possible

04.03.2011
The science similar to the type used in airport body scanners could soon be used to detect everything from defects in aerospace vehicles or concrete bridges to skin cancer, thanks to researchers at Missouri University of Science and Technology.

The research team, led by Dr. Reza Zoughi, the Schlumberger Distinguished Professor of Electrical Engineering at Missouri S&T, has developed a patented handheld camera that uses millimeter and microwave signals to non-intrusively peek inside materials and structures in real time. His contributions to this field, in part, have earned him the 2011 Joseph F. Keithley Award in Instrumentation and Measurement from the Institute of Electrical and Electronics Engineers (IEEE).

“In the not-so-distant future, the technology may be customized to address many critical inspection needs, including detecting defects in thermal insulating materials that are found in spacecraft heat insulating foam and tiles, space habitat structures, aircraft radomes and composite-strengthened concrete bridge members,” Zoughi says.

The technology could help medical professionals detect and monitor a variety of skin conditions in humans, including cancer and burns. It also has the potential to help Homeland Security personnel detect concealed contraband (such as weapons) or reduce the number of passenger pat downs at airports. Even homeowners could see a direct benefit from the technology as it potentially could be used to detect termite damage.

How it works
The compact system can produce synthetically focused images of objects – at different planes in front of the camera – at speeds of up to 30 images per second. A laptop computer then collects the signal and displays the image in real-time for review. The entire system, powered by a battery similar to the size used in laptops, can run for several hours.

“Unlike X-rays, microwaves are non-ionizing and may only cause some heating effect,” Zoughi says. “However, the high sensitivity and other characteristics of this camera enables it to operate at a low-power level.”

The idea for developing a real-time, portable camera came to Zoughi in 1998 while he was on sabbatical in France. In 2007, Zoughi's research group completed the first prototype and has spent the past three years decreasing its size, while improving its overall efficiency.

Currently the camera operates in the transmission mode, meaning objects must pass between a transmitting source and its collector to be reviewed. The team is working on designing and developing a one-sided version of it, which will make it operate in a similar fashion to a video camera.

“Further down the road, we plan to develop a wide-band camera capable of producing real-time 3-D or holographic images,” Zoughi adds.

In 2010, a U.S. patent was issued for this technology. Included on the patent along with Zoughi are Dr. Mohamed Ahmed AbouKhousa, who received a Ph.D. in electrical engineering from Missouri S&T in 2009; Dr. Mohammed Tayeb Ahmad Ghasr, assistant research professor of electrical and computer engineering at Missouri S&T; Dr. Sergiy Kharkivskiy, associate research professor of electrical and computer engineering at Missouri S&T; and Dr. David Pommerenke, professor of electrical and computer engineering at Missouri S&T.

Mindy Limback | Newswise Science News
Further information:
http://www.mst.edu
http://youtu.be/eKOXzwa6Tqs

More articles from Power and Electrical Engineering:

nachricht Perovskite-silicon solar cell research collaboration hits 25.2% efficiency
15.06.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Second heat source optimises heat pump system
12.06.2018 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>