Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Call made for better metrics for energy savings

22.02.2010
MSU professor says EROI not enough

A Michigan State University professor says if the world is to make better decisions when it comes to developing new energy sources, it needs to have better methods of measuring progress toward its energy goals. Just how well are we doing at developing alternatives to fossil fuels?

Speaking at this year's meeting of the American Association for the Advancement of Science, Bruce Dale said that appropriate metrics are needed in order to gauge our progress toward energy security.

"The problem is, how do we develop metrics that are relatively straight forward, relatively easy to calculate?" said Dale, an MSU professor of chemical engineering and materials science. "If we get bogged down in complexity, we'll spend decades arguing about it while we continue to burn oil, coal and natural gas, and build up greenhouse gases."

One important and useful method of measurement is "energy return on energy invested," or EROI. This measures how much energy is used to actually produce a unit of energy.

"The EROI metric has significant value, but it alone is not enough," Dale said. "We also need to consider differences in energy quality, which EROI doesn't always address. Right now, the critical energy quality that we need is liquid fuel, fuels for the tank."

For example, some biofuels – liquid fuels made from plant products – have a good EROI, somewhere in the 15:1 range. That means for every 15 units of biofuel energy that is produced, one unit is used to produce that 15 units.

"However," said Dale, "if we are to enhance national energy security, we need to go beyond this. We should also consider critical materials that are required to pursue different energy alternatives, such as the availability of lithium for electric vehicles."

Dale's presentation, titled "Thinking Clearly About Energy," was part of a symposium titled "Consequences of Changes in Energy Return on Energy Invested."

For additional information on the AAAS meeting and other MSU presentations, go to http://special.news.msu.edu/aaas2010/

Tom Oswald | EurekAlert!
Further information:
http://www.msu.edu

More articles from Power and Electrical Engineering:

nachricht Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record
20.02.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>