Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Broken Symmetry’ Discovery in High-Temperature Superconductors Opens New Research Path

19.07.2010
In a major step toward understanding the mysterious “pseudogap” state in high-temperature cuprate superconductors, a team of Cornell, Binghamton University and Brookhaven National Laboratory scientists have found a “broken symmetry,” where electrons act like molecules in a liquid crystal: Electrons between copper and oxygen atoms arrange themselves differently “north-south” than “east-west.”

This simple discovery opens a door to new research that could lead to room-temperature superconductors.

“Cornell has the world’s best, if not the universe’s best scanning tunneling microscope (STM) facility; combining that with a new theoretical idea enabled this discovery,” said Eun-Ah Kim, assistant professor of physics at Cornell and corresponding author of a report published July 15 in the journal Nature.

“We know if you identify the broken symmetries, you are close to understanding how a material works,” said J.C. Séamus Davis, Cornell’s J.D. White Distinguished Professor of Physical Sciences and director of the Center for Emergent Superconductivity at Brookhaven National Laboratory. He said the discovery is analogous to learning that a key to controlling liquid crystals (found in the LCD displays in watches, calculators and computer monitors) was that the molecules can arrange into an asymmetrical state.

Broken symmetries are seen in many materials when they undergo a “phase transition” like that of water freezing into ice, or liquid crystals becoming opaque. A material going into a superconducting state – conducting electricity with zero resistance – is another kind of phase transition.

Superconductivity was first discovered in pure metals cooled very close to absolute zero (-273 degrees Celsius). Ceramic materials called cuprates superconduct at temperatures as “high” as 150 Kelvins (degrees above absolute zero). Cuprates are made up of copper oxide layers alternating with layers of other elements. Each copper oxide layer is a checkerboard sheet formed by repeating an L-shaped unit of one copper and two oxygens, with one oxygen atom to the “north” and the other to the “east” of each copper. The presence of other elements between the copper oxide sheets nudges electrons in the copper oxide sheet around and, at the right combinations of temperature and chemical content, creates a condition for superconductivity.

Davis and his experimental group study these materials using an exceptionally precise STM that can map the location of atoms and energy levels of the electrons around them. In the superconducting phase, an “energy gap” appears – electrons that ought to be in certain energy levels associated with atoms disappear to form “Cooper pairs” that travel without resistance. But above the superconducting temperature there is a range where the energy gap is still seen, but superconductivity is not.

This “pseudogap” phase may extend all the way to room temperature in some materials, so learning to overcome its limitations could lead to room-temperature superconductors.

The broken symmetry has been present but hidden in existing data from STM experiments including ones from the Davis group, said Kim, who, with colleagues at Cornell and Binghamton, proposed a new theoretical perspective and mathematical procedure to reveal the broken symmetry from the data.

Previously, Kim said, theorists had focused only on the arrangement of the copper atoms, and experimentalists had been averaging signals over all the oxygen atoms in a sample, rather than comparing “east-west” and “north-south” signals.

Kim said the finding presents “an opportunity for a whole new stage of research. We have a map of this broken symmetry, now we can experimentally study how it affects superconductivity. Further, the importance of oxygen sites for the broken symmetry points to a theoretical model that may explain the mechanism of pseudogap and high Tc [critical temperature] superconductivity.“

The research was supported primarily by the National Science Foundation and Department of Energy. Additional funding was provided by the U.S. Army Research Office and University of British Columbia.

Text written by Bill Steele, Cornell University Chronicle

Blaine Friedlander | Newswise Science News
Further information:
http://www.cornell.edu

More articles from Power and Electrical Engineering:

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

nachricht Positrons as a new tool for lithium ion battery research: Holes in the electrode
22.02.2017 | Technische Universität München

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>