Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bringing in the Sunshine with Sollectors on the Roof

14.06.2011
Siemens is planning to use an ingenious technology to bring daylight into building interiors.

The latest issue of the research magazine "Pictures of the Future" features a report on how this is to be achieved. Sunlight is collected by “sollectors” on the roof and fed into waveguides, which run throughout the building.


The waveguides emerge from the room ceilings, where they supply a special light that provides additional artificial lighting from light-emitting diodes (LEDs) if needed. The Siemens subsidiary Osram and its partners are building the prototype of such an LED light.

This direct utilization of sunlight is highly efficient. Between 50 and 70 percent of the captured light supplements the room lighting. In contrast, if you use the light to produce solar energy which is then used to power a conventional lamp, the light energy generated is only a few percent of the amount of energy originally collected.

The sollector is a square plate measuring just over half a meter on each side. A total of 900 lenses collect the sunlight and feed it into fiber optic cables. Ultraviolet radiation, which is damaging to the skin, and the infrared component, which heats up rooms, are filtered out. In strong sunlight, a sollector can supply a room with light equivalent to that produced by a dozen 60-watt light bulbs. The device was developed at the Georg Simon Ohm University of Applied Sciences in Nuremberg, Germany, and a startup founded by the university is already marketing the technology.

The LED version is now being produced in collaboration with Osram. The light from the fiber optic cables makes a flat lamp light up. The light from white LEDs is also directed onto the flat surface. Special sensors, which are adjusted in line with the light sensitivity of humans, register the point at which additional artificial light is needed. The spectral composition of natural light changes during the course of a day, so the color of the white LED light is varied depending on the time of day. Red light is added in the morning and evening, and the amount of blue is increased during the daytime.

Sollectors utilize only direct sunlight, not the diffuse radiation from an overcast sky, so it pays to use them in sunny regions in particular. Building inhabitants in such locations block the sun from entering the interior to keep rooms from becoming too warm and turn on the lights instead. In the future they may be able to capture sunlight and guide the brightness — without any warming infrared radiation — to where it is needed.

Dr. Norbert Aschenbrenner | Siemens ResearchNews
Further information:
http://www.siemens.com/researchnews

Further reports about: Applied Science LED Osram Roof Sollectors light-emitting diode

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>