Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Bright Plastics: OLED with Record Efficiency

23.01.2012
A flexible OLED from Osram has set a new efficiency record. Like their LED cousins, OLEDs are semiconductors that convert electricity into light.

However, whereas LEDs create points of light from a tiny luminescent chip, OLEDs generate illuminated surfaces using so-called OLED panels. Initial OLED products in the form of thin tiles have been on the market for two years now, and bendable variants are currently being developed.


Osram researchers have now produced in the lab a flexible OLED that emits white light from a surface measuring approximately 11x3 centimeters. The unit generates 32 lumens of light per watt of electricity, making it more efficient than a halogen lamp.

OLEDs are extremely lightweight surface-emitting panels just a few millimeters thick that provide glare-free, white light. Their structure opens up previously unimaginable interior-design possibilities that include luminescent room partitions. The active illuminating layer of an OLED consists of organic plastics and has a thickness of only half a micrometer.

In the rigid OLED variant, this layer and thin metal contact points are affixed to a glass panel. An inactive OLED has a hazy white or reflective surface. Transparent OLED variants are also being developed that can serve as windows during the day and sources of light in the evening. Because an OLED’s luminescent layer is flexible, researchers are also working on bendable OLED variants. Still, the flexible luminescent surfaces need to be made more efficient if they’re to be successful on the mass market.

... more about:
»LED »OLED »Osram »energy efficiency »white light

The 32 lumens per watt achieved by the Osram scientists was in part due to a special design for the vacuum-metallized electrical contacts. The record efficiency values were measured using a large-area sample under the most realistic conditions possible, and without any lenses or other devices to increase the light yield.

One of the challenges associated with the design of flexible OLEDs involves protecting the sensitive luminescent layer against oxygen and humidity. That’s why flexible OLEDs are sealed using a special thin-film process rather than with a glass cover. A flexible steel foil no thicker than a sheet of paper, is used instead of the glass sheet on the back of the OLED.

Siemens’ Osram subsidiary has invested roughly €50 million in the development of OLEDs over the last five years. The company presented Orbeos, its first OLED product for this sector, two years ago and launched the world’s first pilot production facility in August 2011.

In an effort to rapidly prepare the technology for mass-market success, Osram recently began offering an introductory product known as Orbeos Dance that comes with an electrical ballast and connection accessories.

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Further information:
http://www.siemens.com/innovationnews

Further reports about: LED OLED Osram energy efficiency white light

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>