Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breakthrough to the development of energy-saving devices for the next generation

21.10.2015

Towards the development of a new evaluation method of semiconductors by using terahertz (THz) waves

Wide-gap semiconductors such as gallium nitride (GaN) are widely used for optical devices such as blue LED and are also anticipated as materials for next-generation energy saving power devices and solar cells.


As shown in Figure a, in the neighborhood of the surface of semiconductor of GaN, the energy band is bent due to the surface potential. It is thought that photoexcited carriers are accelerated by the band bending, thereby radiating THz. It is also thought that the change in THz wave emission intensity due to defects, as shown in Figure b, is because the energy band bent significantly due to electrons trapped by defects near the surface, which further accelerated carriers. This shows that LTEM is effective for measuring the defect density of the surface of wide-gap semiconductors and their distribution of the surface potential.

Credit: Osaka University

However, the quality of GaN crystals does not come up to that of conventional semiconductor materials such as silicon (Si) and this prevents GaN from being used for power devices.

For that reason, the establishment of technology for producing high-quality crystals with fewer defects and rearrangement is expected, and the development of a new evaluation technology is crucial.

A group of researchers led by Iwao Kawayama, an associate professor of the Institute of Laser Engineering at Osaka University, in cooperation with Screen Holdings Co., Ltd., succeeded in visualizing changes in defect density on the surface of GaN through the laser terahertz emission microscope (LTEM) which measures THz waves generated by laser emission.

This group's discovery shows that LTEM is useful as a new method for evaluating the quality of wide-gap semiconductors and it is also expected that LTEM will bring a breakthrough in the development of next-generation optical devices, super high frequency devices, and energy devices.

The group examined the intensity distribution of THz generated by radiating ultraviolet femtosecond laser pulses on the surface of GaN crystal through LTEM.

As a result, it was found that there were regions with high intensity of THz emission and ones with low intensity of THz emission.

Additionally, when the LTEM image was compared with the image obtained through photoluminescence (PL) using a conventional method, it was found that there was a strong correlation between the distribution of emission intensity due to lattice defects and the intensity distribution of THz wave emission.

Furthermore, from results measurement through modification of excited lasers, it was confirmed that THz emission needs excitation light with larger energy than the band gap energy.

###

This research was featured in the electronic version of Scientific Reports (UK) on September 9, 2015.

Iwao Kawayama | EurekAlert!

More articles from Power and Electrical Engineering:

nachricht Open, flexible assembly platform for optical systems
23.01.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>