Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blocked holes can enhance rather than stop light transmission

23.11.2011
By Steven SchultzSharePrintConventional wisdom would say that blocking a hole would prevent light from going through it, but Princeton University engineers have discovered the opposite to be true. A research team has found that placing a metal cap over a small hole in a metal film does not stop the light at all, but rather enhances its transmission.

In an example of the extraordinary twists of physics that can occur at very small scales, electrical engineer Stephen Chou and colleagues made an array of tiny holes in a thin metal film, then blocked each hole with an opaque metal cap. When they shined light into the holes, they found that as much as 70 percent more light came through when the holes were blocked than when they were open.

"The common wisdom in optics is that if you have a metal film with very small holes and you plug the holes with metal, the light transmission is blocked completely," said Chou, the Joseph Elgin Professor of Engineering. "We were very surprised."

Chou said the result could have significant implications and uses. For one, he said, it might require scientists and engineers to rethink techniques they have been using when they want to block all light transmission. In very sensitive optical instruments, such as microscopes, telescopes, spectrometers and other optical detectors, for example, it is common to coat a metal film onto glass with the intention of blocking light. Dust particles, which are unavoidable in metal film deposition, inevitably create tiny holes in the metal film, but these holes have been assumed to be harmless because the dust particles become capped and surrounded by metal, which is thought to block the light completely.

"This assumption is wrong — the plug may not stop the leakage but rather greatly enhance it," Chou said.

He explained that in his own field of nanotechnology, light is often used in a technique called photolithography to carve ultrasmall patterns in silicon or other materials. Thin metal film patterns on a glass plate serve as a mask, directing light through certain locations of the plate and blocking other locations. Given the new finding, engineers ought to examine whether the mask blocks the light as expected, Chou said.

Conversely, Chou said, the newly discovered "blocking" technique might be used in situations when a boost in light transmission is desired. In near-field microscopy, for example, scientists view extremely fine details by passing light through a hole as tiny as billionths of a meter in diameter. With the new technique, the amount of light passing through the hole — and thus the amount of information about the object being viewed — can be increased by blocking the hole.

Chou and colleagues stumbled on the phenomenon of enhanced light transmission through a blocked hole in their research on developing ultrasensitive detectors that sense minute amounts of chemicals, with uses ranging from medical diagnostics to the detection of explosives. These detectors use a thin metal film with an array of holes and metal disks to boost faint signals produced when laser light encounters a molecule, allowing much greater sensitivity in identifying substances.

In one of their experimental detectors, the researchers studied transmission of light through an array of tiny holes that were 60 nanometers (billionths of a meter) in diameter and 200 nanometers apart in a gold film that was 40 nanometers thick. Each tiny hole was capped with a gold disk that was 40 percent larger than the hole. The disks sat on top of the holes with a slight gap between the metal surface and the disks.

The researchers pointed a laser at the underside of the film and tested to see if any of the laser light went through the holes, past the caps, and could be detected on the other side. To their surprise, they found that the total light transmission was 70 percent higher with the holes blocked by the metal disks than without blockers. The researchers repeated the same experiment shining the light in the opposite direction — pointing at the side with the caps and looking for transmitted light under the film — and found the same results.

"We did not expect more light to get through," Chou said. "We expected the metal to block the light completely."

Chou said the metal disk acts as a sort of "antenna" that picks up and radiates electromagnetic waves. In this case, the metal disks pick up light from one side of the hole and radiate it to the opposite side. The waves travel along the surface of the metal and leap from the hole to the cap, or vice versa depending on which way the light is traveling. Chou's research group is continuing to investigate the effect and how it could be applied to enhance the performance of ultrasensitive detectors.

The researchers published their findings Oct. 7 in the journal Optics Express, and it quickly became one of the most downloaded papers. In addition to Chou, the team included graduate student Wen-Di Li and postdoctoral researcher Jonathan Hu in the Department of Electrical Engineering. The work is sponsored in part by the Defense Advanced Research Agency and the National Science Foundation.

Steven Schultz | EurekAlert!
Further information:
http://www.princeton.edu

More articles from Power and Electrical Engineering:

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Researchers develop environmentally friendly soy air filter
16.01.2017 | Washington State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>