Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Blocked holes can enhance rather than stop light transmission

23.11.2011
By Steven SchultzSharePrintConventional wisdom would say that blocking a hole would prevent light from going through it, but Princeton University engineers have discovered the opposite to be true. A research team has found that placing a metal cap over a small hole in a metal film does not stop the light at all, but rather enhances its transmission.

In an example of the extraordinary twists of physics that can occur at very small scales, electrical engineer Stephen Chou and colleagues made an array of tiny holes in a thin metal film, then blocked each hole with an opaque metal cap. When they shined light into the holes, they found that as much as 70 percent more light came through when the holes were blocked than when they were open.

"The common wisdom in optics is that if you have a metal film with very small holes and you plug the holes with metal, the light transmission is blocked completely," said Chou, the Joseph Elgin Professor of Engineering. "We were very surprised."

Chou said the result could have significant implications and uses. For one, he said, it might require scientists and engineers to rethink techniques they have been using when they want to block all light transmission. In very sensitive optical instruments, such as microscopes, telescopes, spectrometers and other optical detectors, for example, it is common to coat a metal film onto glass with the intention of blocking light. Dust particles, which are unavoidable in metal film deposition, inevitably create tiny holes in the metal film, but these holes have been assumed to be harmless because the dust particles become capped and surrounded by metal, which is thought to block the light completely.

"This assumption is wrong — the plug may not stop the leakage but rather greatly enhance it," Chou said.

He explained that in his own field of nanotechnology, light is often used in a technique called photolithography to carve ultrasmall patterns in silicon or other materials. Thin metal film patterns on a glass plate serve as a mask, directing light through certain locations of the plate and blocking other locations. Given the new finding, engineers ought to examine whether the mask blocks the light as expected, Chou said.

Conversely, Chou said, the newly discovered "blocking" technique might be used in situations when a boost in light transmission is desired. In near-field microscopy, for example, scientists view extremely fine details by passing light through a hole as tiny as billionths of a meter in diameter. With the new technique, the amount of light passing through the hole — and thus the amount of information about the object being viewed — can be increased by blocking the hole.

Chou and colleagues stumbled on the phenomenon of enhanced light transmission through a blocked hole in their research on developing ultrasensitive detectors that sense minute amounts of chemicals, with uses ranging from medical diagnostics to the detection of explosives. These detectors use a thin metal film with an array of holes and metal disks to boost faint signals produced when laser light encounters a molecule, allowing much greater sensitivity in identifying substances.

In one of their experimental detectors, the researchers studied transmission of light through an array of tiny holes that were 60 nanometers (billionths of a meter) in diameter and 200 nanometers apart in a gold film that was 40 nanometers thick. Each tiny hole was capped with a gold disk that was 40 percent larger than the hole. The disks sat on top of the holes with a slight gap between the metal surface and the disks.

The researchers pointed a laser at the underside of the film and tested to see if any of the laser light went through the holes, past the caps, and could be detected on the other side. To their surprise, they found that the total light transmission was 70 percent higher with the holes blocked by the metal disks than without blockers. The researchers repeated the same experiment shining the light in the opposite direction — pointing at the side with the caps and looking for transmitted light under the film — and found the same results.

"We did not expect more light to get through," Chou said. "We expected the metal to block the light completely."

Chou said the metal disk acts as a sort of "antenna" that picks up and radiates electromagnetic waves. In this case, the metal disks pick up light from one side of the hole and radiate it to the opposite side. The waves travel along the surface of the metal and leap from the hole to the cap, or vice versa depending on which way the light is traveling. Chou's research group is continuing to investigate the effect and how it could be applied to enhance the performance of ultrasensitive detectors.

The researchers published their findings Oct. 7 in the journal Optics Express, and it quickly became one of the most downloaded papers. In addition to Chou, the team included graduate student Wen-Di Li and postdoctoral researcher Jonathan Hu in the Department of Electrical Engineering. The work is sponsored in part by the Defense Advanced Research Agency and the National Science Foundation.

Steven Schultz | EurekAlert!
Further information:
http://www.princeton.edu

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>