Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biofuels Can Provide Viable, Sustainable Solution to Reducing Petroleum Dependence

12.02.2009
An in-depth study by Sandia National Laboratories and General Motors Corp. has found that plant and forestry waste and dedicated energy crops could sustainably replace nearly a third of gasoline use by the year 2030.

The goal of the "90-Billion Gallon Biofuel Deployment Study" was to assess whether and how a large volume of cellulosic biofuel could be sustainably produced, assuming technical and scientific progress continues at expected rates. The study was conducted over a period of nine months.

Researchers assessed the feasibility, implications, limitations, and enablers of annually producing 90 billion gallons of ethanol — sufficient to replace more than 60 billion of the estimated 180 billion gallons of gasoline expected to be used annually by 2030. Ninety billion gallons a year exceeds the U.S. Department of Energy’s goal for ethanol production established in 2006.

The "90 Billion Gallon Study" assumes 75 billion gallons would be ethanol made from nonfood cellulosic feedstocks and 15 billion gallons from corn-based ethanol. The study examined four sources of biofuels: agricultural residue, such as corn stover and wheat straw; forest residue; dedicated energy crops, including switchgrass; and short rotation woody crops, such as willow and poplar trees. It examines the costs of producing, harvesting, storing and transporting these sources to newly built biorefineries.

Key findings

Using a newly developed tool known as the Biofuels Deployment Model, or BDM, Sandia researchers determined that 21 billion gallons of cellulosic ethanol could be produced per year by 2022 without displacing current crops. The Renewable Fuels Standard, part of the 2007 Energy Independence and Security Act, calls for ramping up biofuels production to 36 billion gallons a year by 2022.

The 90 Billion Gallon Study, which focused only on starch-based and cellulosic ethanol, found that an increase to 90 billion gallons of ethanol could be sustainably achieved by 2030 within real-world economic and environmental parameters.

Other findings:

* Continued support of R&D and initial commercialization is critical because sustained technological progress and commercial validation is a prerequisite to affordably producing the large volumes of ethanol considered in this study.

* Policy incentives such as a federal cap and trade program, carbon taxes, excise tax credits and loan guarantees for cellulosic biofuels are important to mitigate the risk of oil market volatility.

* The domestic investment for biofuels production is projected to be virtually the same as the investment required to sustain long-term domestic petroleum production.

* Cellulosic biofuels could compete without incentives with oil priced at $90 per barrel, assuming a reduction in total costs as advanced biofuels technologies mature.

* Large-scale cellulosic biofuel production could be achieved at or below current water consumption levels of petroleum fuels from on-shore oil production and refining.

The industrial processes by which nonfood forms of biomass are converted into sugars suitable for production of biofuels were a focus of the study.

Sandia’s analysis also included land use, water availability, energy used to produce cellulosic biomass, transportation of feedstocks and other potential leverage points for the development and use of cellulosic biofuels. In conducting its research, Sandia utilized models that examined current and future technologies for development of ethanol.

Future enhancements to Sandia’s BDM are planned, contingent on additional partnerships. Such improvements to the current software tool, says Sandia business development associate Carrie Burchard, would provide an even more comprehensive systems understanding of the biofuels industry.

Sandia enjoys a longstanding relationship with all the major U.S. automakers and has worked previously with GM on a variety of automotive research activities. Sandia also plays a major role in the Joint BioEnergy Institute (JBEI) and several other transportation energy and biofuels projects.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Mike Janes | Newswise Science News
Further information:
http://www.sandia.gov

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>