Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Biofuels Can Provide Viable, Sustainable Solution to Reducing Petroleum Dependence

12.02.2009
An in-depth study by Sandia National Laboratories and General Motors Corp. has found that plant and forestry waste and dedicated energy crops could sustainably replace nearly a third of gasoline use by the year 2030.

The goal of the "90-Billion Gallon Biofuel Deployment Study" was to assess whether and how a large volume of cellulosic biofuel could be sustainably produced, assuming technical and scientific progress continues at expected rates. The study was conducted over a period of nine months.

Researchers assessed the feasibility, implications, limitations, and enablers of annually producing 90 billion gallons of ethanol — sufficient to replace more than 60 billion of the estimated 180 billion gallons of gasoline expected to be used annually by 2030. Ninety billion gallons a year exceeds the U.S. Department of Energy’s goal for ethanol production established in 2006.

The "90 Billion Gallon Study" assumes 75 billion gallons would be ethanol made from nonfood cellulosic feedstocks and 15 billion gallons from corn-based ethanol. The study examined four sources of biofuels: agricultural residue, such as corn stover and wheat straw; forest residue; dedicated energy crops, including switchgrass; and short rotation woody crops, such as willow and poplar trees. It examines the costs of producing, harvesting, storing and transporting these sources to newly built biorefineries.

Key findings

Using a newly developed tool known as the Biofuels Deployment Model, or BDM, Sandia researchers determined that 21 billion gallons of cellulosic ethanol could be produced per year by 2022 without displacing current crops. The Renewable Fuels Standard, part of the 2007 Energy Independence and Security Act, calls for ramping up biofuels production to 36 billion gallons a year by 2022.

The 90 Billion Gallon Study, which focused only on starch-based and cellulosic ethanol, found that an increase to 90 billion gallons of ethanol could be sustainably achieved by 2030 within real-world economic and environmental parameters.

Other findings:

* Continued support of R&D and initial commercialization is critical because sustained technological progress and commercial validation is a prerequisite to affordably producing the large volumes of ethanol considered in this study.

* Policy incentives such as a federal cap and trade program, carbon taxes, excise tax credits and loan guarantees for cellulosic biofuels are important to mitigate the risk of oil market volatility.

* The domestic investment for biofuels production is projected to be virtually the same as the investment required to sustain long-term domestic petroleum production.

* Cellulosic biofuels could compete without incentives with oil priced at $90 per barrel, assuming a reduction in total costs as advanced biofuels technologies mature.

* Large-scale cellulosic biofuel production could be achieved at or below current water consumption levels of petroleum fuels from on-shore oil production and refining.

The industrial processes by which nonfood forms of biomass are converted into sugars suitable for production of biofuels were a focus of the study.

Sandia’s analysis also included land use, water availability, energy used to produce cellulosic biomass, transportation of feedstocks and other potential leverage points for the development and use of cellulosic biofuels. In conducting its research, Sandia utilized models that examined current and future technologies for development of ethanol.

Future enhancements to Sandia’s BDM are planned, contingent on additional partnerships. Such improvements to the current software tool, says Sandia business development associate Carrie Burchard, would provide an even more comprehensive systems understanding of the biofuels industry.

Sandia enjoys a longstanding relationship with all the major U.S. automakers and has worked previously with GM on a variety of automotive research activities. Sandia also plays a major role in the Joint BioEnergy Institute (JBEI) and several other transportation energy and biofuels projects.

Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin company, for the U.S. Department of Energy’s National Nuclear Security Administration. With main facilities in Albuquerque, N.M., and Livermore, Calif., Sandia has major R&D responsibilities in national security, energy and environmental technologies, and economic competitiveness.

Mike Janes | Newswise Science News
Further information:
http://www.sandia.gov

More articles from Power and Electrical Engineering:

nachricht Waste from paper and pulp industry supplies raw material for development of new redox flow batteries
12.10.2017 | Johannes Gutenberg-Universität Mainz

nachricht Low-cost battery from waste graphite
11.10.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>