Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New benchmarks in HVDC technology: Siemens puts world’s first 800-kV high-voltage direct-current link into operation in China

In late December 2009, Siemens Energy and the utility China Southern Power Grid put into operation the first pole of a HVDC system of enormous scale and magnitude: With a transmission capacity of 5000 megawatts (MW) und covering a distance of more than 1400 kilometers the Yunnan-Guangdong high-voltage direct-current transmission system (HVDC) recently is the world’s most powerful of its kind implemented.

At the same time it is the first HVDC link operating at a transmission voltage of 800 kilovolts (kV). Siemens is thus setting new benchmarks in energy-efficient transmission of ecofriendly electricity. Commissioning of the second pole and thus startup of the entire system is scheduled for mid-2010.

China has raised the DC voltage of its new long-distance HVDC links to 800 kV in order to further reduce transmission losses and to be able to bridge even greater distances. For example, the ecofriendly, CO2-free power generated by several hydro power plants will be transported with low-loss transmission via the new 800-kV HVDC link to the rapidly growing industrial region in the Pearl River delta in Guangdong Province with its megacities Guangzhou and Shenzhen. This high-efficiency HVDC system can reduce annual CO2 emissions by over 30 megatons, which would otherwise have been produced by additional fossil-fueled power plants linked to the interconnected grid in Guangdong Province.

“Successful commissioning of the first pole of currently the world’s most powerful HVDC system shows that our efforts to get 800-kV HVDC technology ready for concrete projects have paid off. As technology leader in this field we have thus set new benchmarks,“ said Udo Niehage, CEO of the Power Transmission Division of Siemens Energy.

Together with its Chinese partners Siemens designed the entire HVDC system for the Yunnan-Guangdong project and supplied the core components, which included 800-kV and 600-kV converter transformers, DC filters and 800-kV direct-current components.

Energy-efficient, high-voltage direct-current (HVDC) transmission systems for low-loss transmission of large quantities of power over long distances are part of Siemens’ Environmental Portfolio. In fiscal 2009, revenue from the Portfolio totaled about EUR23 billion, making Siemens the world’s largest supplier of ecofriendly technologies. In the same period, our products and solutions enabled customers to reduce their CO2 emissions by 210 million tons.

The Siemens Energy Sector is the world’s leading supplier of a complete spectrum of products, services and solutions for the generation, transmission and distribution of power and for the extraction, conversion and transport of oil and gas. In fiscal 2009 (ended September 30), the Energy Sector had revenues of approximately EUR25.8 billion and received new orders totaling approximately EUR30 billion and posted a profit of EUR3.3 billion. On September 30, 2009, the Energy Sector had a work force of more than 85,100.

Siemens AG
Corporate Communications and Government Affairs
Wittelsbacherplatz 2, 80333 Munich
Reference number: EPT200912030
Media Relations: Dietrich Biester
Phone: +49 9131 7-33559
Siemens AG
Energy Sector – Power Distribution Division
Freyeslebenstr. 1, 91058 Erlangen, Germany

Dietrich Biester | Siemens Energy
Further information:

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>