Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New benchmarks in HVDC technology: Siemens puts world’s first 800-kV high-voltage direct-current link into operation in China

06.01.2010
In late December 2009, Siemens Energy and the utility China Southern Power Grid put into operation the first pole of a HVDC system of enormous scale and magnitude: With a transmission capacity of 5000 megawatts (MW) und covering a distance of more than 1400 kilometers the Yunnan-Guangdong high-voltage direct-current transmission system (HVDC) recently is the world’s most powerful of its kind implemented.

At the same time it is the first HVDC link operating at a transmission voltage of 800 kilovolts (kV). Siemens is thus setting new benchmarks in energy-efficient transmission of ecofriendly electricity. Commissioning of the second pole and thus startup of the entire system is scheduled for mid-2010.

China has raised the DC voltage of its new long-distance HVDC links to 800 kV in order to further reduce transmission losses and to be able to bridge even greater distances. For example, the ecofriendly, CO2-free power generated by several hydro power plants will be transported with low-loss transmission via the new 800-kV HVDC link to the rapidly growing industrial region in the Pearl River delta in Guangdong Province with its megacities Guangzhou and Shenzhen. This high-efficiency HVDC system can reduce annual CO2 emissions by over 30 megatons, which would otherwise have been produced by additional fossil-fueled power plants linked to the interconnected grid in Guangdong Province.

“Successful commissioning of the first pole of currently the world’s most powerful HVDC system shows that our efforts to get 800-kV HVDC technology ready for concrete projects have paid off. As technology leader in this field we have thus set new benchmarks,“ said Udo Niehage, CEO of the Power Transmission Division of Siemens Energy.

Together with its Chinese partners Siemens designed the entire HVDC system for the Yunnan-Guangdong project and supplied the core components, which included 800-kV and 600-kV converter transformers, DC filters and 800-kV direct-current components.

Energy-efficient, high-voltage direct-current (HVDC) transmission systems for low-loss transmission of large quantities of power over long distances are part of Siemens’ Environmental Portfolio. In fiscal 2009, revenue from the Portfolio totaled about EUR23 billion, making Siemens the world’s largest supplier of ecofriendly technologies. In the same period, our products and solutions enabled customers to reduce their CO2 emissions by 210 million tons.

The Siemens Energy Sector is the world’s leading supplier of a complete spectrum of products, services and solutions for the generation, transmission and distribution of power and for the extraction, conversion and transport of oil and gas. In fiscal 2009 (ended September 30), the Energy Sector had revenues of approximately EUR25.8 billion and received new orders totaling approximately EUR30 billion and posted a profit of EUR3.3 billion. On September 30, 2009, the Energy Sector had a work force of more than 85,100.

Siemens AG
Corporate Communications and Government Affairs
Wittelsbacherplatz 2, 80333 Munich
Germany
Reference number: EPT200912030
Media Relations: Dietrich Biester
Phone: +49 9131 7-33559
E-mail: dietrich.biester@siemens.com
Siemens AG
Energy Sector – Power Distribution Division
Freyeslebenstr. 1, 91058 Erlangen, Germany

Dietrich Biester | Siemens Energy
Further information:
http://www.siemens.com/energy

More articles from Power and Electrical Engineering:

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

nachricht Tailor-Made Membranes for the Environment
30.11.2016 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>