Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Battery of the Future: New storage material improves energy density of lithium-ion battery

28.10.2009
High-performance energy storage technologies for the automotive industry or mobile phone batteries and notebooks providing long battery times - these visions of the future are being brought one step nearer to the present by scientists from Graz University of Technology. Researchers at the Institute for Chemistry and Technology of Materials have developed a new method that utilises silicon for lithium-ion batteries.

Its storage capacity is ten times higher than the graphite substrate which has been used up to now, and promises considerable improvements for users. The new findings - which came to light in the "NanoPoliBat" EU project - have been recently submitted to the patent office by researchers together with their co-operation partner Varta Microbattery.

Modern electronic devices need more energy and even the automotive industry is hankering after increasingly powerful energy storage systems. The technological development of battery research has been inadequate for some time now. "A real revolution is needed for the development of the next generation. We need new storage materials for lithium-ion batteries", explains battery researcher Stefan Koller, who is familiar with the topic from his doctoral thesis. Together with colleagues from science and industry, he has managed to develop such a substrate material for electrochemical reactions at a low price.

Silicon gel on graphite

In the newly developed process, researchers utilise a silicon-containing gel and apply it to the graphite substrate material. "In this way the graphite works as a buffer, cushioning the big changes in volume of the silicon during the uptake and transfer of lithium ions", explains Koller. Silicon has a lithium-ion storage capacity some ten times higher than the up-to-now commercially used graphite. The new material can thus store more than double the quantity of lithium ions without changes to the battery lifetime. This method is far cheaper than the previous ones in which silicon is separated in the gas phase. The challenge lies in the poor storage density of materials in the counter electrode in the whole battery, something which we have been doing intensive research on," says Koller.

Enquiries:
Dr. Stefan Koller
Institute for Chemistry and Technology of Materials
E-mail: stefan.koller@tugraz.at
Tel.: +43 (0) 316 873 8763
Mobile: +43 (0) 664 39 49 547

Alice Senarclens de Grancy | idw
Further information:
http://www.tugraz.at
http://www.presse.tugraz.at/webgalleryBDR/data/batterie/index.htm

More articles from Power and Electrical Engineering:

nachricht Multicrystalline Silicon Solar Cell with 21.9 % Efficiency: Fraunhofer ISE Again Holds World Record
20.02.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Six-legged robots faster than nature-inspired gait
17.02.2017 | Ecole Polytechnique Fédérale de Lausanne

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>