Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The Battery of the Future: New storage material improves energy density of lithium-ion battery

28.10.2009
High-performance energy storage technologies for the automotive industry or mobile phone batteries and notebooks providing long battery times - these visions of the future are being brought one step nearer to the present by scientists from Graz University of Technology. Researchers at the Institute for Chemistry and Technology of Materials have developed a new method that utilises silicon for lithium-ion batteries.

Its storage capacity is ten times higher than the graphite substrate which has been used up to now, and promises considerable improvements for users. The new findings - which came to light in the "NanoPoliBat" EU project - have been recently submitted to the patent office by researchers together with their co-operation partner Varta Microbattery.

Modern electronic devices need more energy and even the automotive industry is hankering after increasingly powerful energy storage systems. The technological development of battery research has been inadequate for some time now. "A real revolution is needed for the development of the next generation. We need new storage materials for lithium-ion batteries", explains battery researcher Stefan Koller, who is familiar with the topic from his doctoral thesis. Together with colleagues from science and industry, he has managed to develop such a substrate material for electrochemical reactions at a low price.

Silicon gel on graphite

In the newly developed process, researchers utilise a silicon-containing gel and apply it to the graphite substrate material. "In this way the graphite works as a buffer, cushioning the big changes in volume of the silicon during the uptake and transfer of lithium ions", explains Koller. Silicon has a lithium-ion storage capacity some ten times higher than the up-to-now commercially used graphite. The new material can thus store more than double the quantity of lithium ions without changes to the battery lifetime. This method is far cheaper than the previous ones in which silicon is separated in the gas phase. The challenge lies in the poor storage density of materials in the counter electrode in the whole battery, something which we have been doing intensive research on," says Koller.

Enquiries:
Dr. Stefan Koller
Institute for Chemistry and Technology of Materials
E-mail: stefan.koller@tugraz.at
Tel.: +43 (0) 316 873 8763
Mobile: +43 (0) 664 39 49 547

Alice Senarclens de Grancy | idw
Further information:
http://www.tugraz.at
http://www.presse.tugraz.at/webgalleryBDR/data/batterie/index.htm

More articles from Power and Electrical Engineering:

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

nachricht Researchers develop environmentally friendly soy air filter
16.01.2017 | Washington State University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

How gut bacteria can make us ill

18.01.2017 | Life Sciences

On track to heal leukaemia

18.01.2017 | Health and Medicine

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>