Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Automatic Self-Optimization of Wind Turbines

12.03.2014

Siemens is “teaching” wind turbines how to automatically optimize their operation in line with weather conditions.

The turbines are learning to use sensor data on parameters such as wind speed to make changes to their settings. These changes ensure the turbines can optimally exploit the prevailing conditions. Wind power facilities can’t always generate their maximum electrical output when wind speeds are moderate or low.

Specialists for learning systems at Siemens Corporate Technology (CT) developed the self-optimization software for wind turbines in cooperation with Technische Universität Berlin and IdaLab GmbH in the ALICE project (Autonomous Learning in Complex Environments), which is funded by Germany’s Ministry of Education and Research.

The researchers are presenting the results of their work at the CeBIT trade show (March 10–14) in Hanover. Their solution enables turbines to produce around one percent more electricity annually under moderate wind conditions, while also reducing wear and tear.

The researchers have a demonstration wind turbine unit that uses its own operating data and gradually increases its electrical output. The scientists’ approach combines reinforcement learning techniques with special neural networks.

A neural network is a software algorithm that operates in a way similar to the human brain. For several years now, Siemens CT has been developing neural networks in order to model and predict the behavior of highly complex systems, such as wind farms, gas turbines, factories, or even stock markets.

The software programs learn from historical data, which also enables them to forecast the future behavior of a system. A model can thus be created that predicts the electrical output of a wind turbine under specific weather conditions.

The researchers examined a large amount of very noisy data to identify relevant attributes that would enable the efficiency of a wind turbine to be improved by changing settings such as rotation speed. Patented neural networks were then used to create a so-called reinforcement learning policy from the analysis results.

The system thus learns to change certain wind turbine settings in a manner that ensures the maximum possible amount of electricity is generated in a given situation. After just a few weeks, the system is able to define and store the optimal settings for common weather occurrences.

After an additional extended period of training, it can even regulate electrical output under rare and exceptional weather conditions. The technology was successfully tested at a Spanish wind farm last year.

Ongoing analyses of relevant oper-ating parameters ensure the system can continually improve itself through repetition. The methods used here can be employed in many other fields, which means additional Siemens products can also be taught to optimize their own operation. ​

Weitere Informationen:

http://www.siemens.com/innovationnews

Dr. Norbert Aschenbrenner | Siemens InnovationNews

Further reports about: Autonomous CT CeBIT Complex Education Siemens Turbines Wind algorithm electricity

More articles from Power and Electrical Engineering:

nachricht Touch Displays WAY-AX and WAY-DX by WayCon
27.06.2017 | WayCon Positionsmesstechnik GmbH

nachricht Air pollution casts shadow over solar energy production
27.06.2017 | Duke University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>