Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atomically Thin Device Promises New Class of Electronics

22.10.2013
Tunable electrical behavior not previously realized in conventional devices

As electronics approach the atomic scale, researchers are increasingly successful at developing atomically thin, virtually two-dimensional materials that could usher in the next generation of computing. Integrating these materials to create necessary circuits, however, has remained a challenge.

Northwestern University researchers have now taken a significant step toward fabricating complex nanoscale electronics. By integrating two atomically thin materials – molybdenum disulfide and carbon nanotubes — they have created a p-n heterojunction diode, an interface between two types of semiconducting materials.

“The p-n junction diode is among the most ubiquitous components of modern electronics,” said Mark Hersam, Bette and Neison Harris Chair in Teaching Excellence in the Department of Materials Science and Engineering at Northwestern’s McCormick School of Engineering and Applied Science and director of the Northwestern University Materials Research Center.

“By creating this device using atomically thin materials, we not only realize the benefits of conventional diodes but also achieve the ability to electronically tune and customize the device characteristics. We anticipate that this work will enable new types of electronic functionality and could be applied to the growing number of emerging two-dimensional materials.”

The isolation over the past decade of atomically thin two-dimensional crystals — such as graphene, a single-atom-thick carbon lattice — has prompted researchers to stack two or more distinct two-dimensional materials to create high-performance, ultrathin electronic devices. While significant progress has been made in this direction, one of the most important electronic components — the p-n junction diode — has been notably absent.

Among the most widely used electronic structures, the p-n junction diode forms the basis of a number of technologies, including solar cells, light-emitting diodes, photodetectors, computers, and lasers.

In addition to its novel electronic functionality, the p-n heterojunction diode is also highly sensitive to light. This attribute has allowed the authors to fabricate and demonstrate an ultrafast photodetector with an electronically tunable wavelength response.

The research, “Gate-Tunable Carbon Nanotube-MoS2 Heterojunction p-n Diode,” was published October 21 in the Proceedings of the National Academy of Sciences.

In addition to Hersam, leading the research were Lincoln Lauhon, professor of materials science and engineering, and Tobin Marks, Vladimir N. Ipatieff Professor of Catalytic Chemistry and (by courtesy) Materials Science and Engineering.

Other authors of the paper are postdoctoral researchers Vinod Sangwan, Chung-Chiang Wu, and Pradyumna Prabhumirashi, and graduate students Deep Jariwala and Michael Geier, all of whom are affiliated with Northwestern University.

This research was supported by the National Science Foundation-funded Materials Research Science and Engineering Center (MRSEC) and the Office of Naval Research.

Megan Fellman | EurekAlert!
Further information:
http://www.northwestern.edu

More articles from Power and Electrical Engineering:

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Solar-to-fuel system recycles CO2 to make ethanol and ethylene
19.09.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>