Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atomic switcheroo explains origins of thin-film solar cell mystery

24.04.2014

Treating cadmium-telluride (CdTe) solar cell materials with cadmium-chloride improves their efficiency, but researchers have not fully understood why.

Now, an atomic-scale examination of the thin-film solar cells led by the Department of Energy’s Oak Ridge National Laboratory has answered this decades-long debate about the materials’ photovoltaic efficiency increase after treatment.


Cross-sectional electron beam-induced current maps show the difference in cadmium telluride solar cells before (pictured above) and after (below) cadmium chloride treatment. The increased brightness after treatment indicates higher current collection at the grain boundaries.

A research team from ORNL, the University of Toledo and DOE’s National Renewable Energy Laboratory used electron microscopy and computational simulations to explore the physical origins of the unexplained treatment process. The results are published in Physical Review Letters (PRL).

Thin-film CdTe solar cells are considered a potential rival to silicon-based photovoltaic systems because of their theoretically low cost per power output and ease of fabrication. Their comparatively low historical efficiency in converting sunlight into energy, however, has limited the technology’s widespread use, especially for home systems.

Research in the 1980s showed that treating CdTe thin films with cadmium-chloride significantly raises the cell’s efficiency, but scientists have been unable to determine the underlying causes. ORNL’s Chen Li, first author on the PRL study, explains that the answer lay in investigating the material at an atomic level.

“We knew that chlorine was responsible for this magical effect, but we needed to find out where it went in the material’s structure,” Li said. “Only by understanding the structure can we understand what’s wrong in this solar cell -- why the efficiency is not high enough, and how can we push it further.”

By comparing the solar cells before and after chlorine treatment, the researchers realized that atom-scale grain boundaries were implicated in the enhanced performance. Grain boundaries are tiny defects that that normally act as roadblocks to efficiency, because they inhibit carrier collection which greatly reduces the solar cell power.

Using state of the art electron microscopy techniques to study the thin films’ structure and chemical composition after treatment, the researchers found that chlorine atoms replaced tellurium atoms within the grain boundaries. This atomic substitution creates local electric fields at the grain boundaries that boost the material’s photovoltaic performance instead of damaging it.

The research team’s finding, in addition to providing a long-awaited explanation, could be used to guide engineering of higher-efficiency CdTe solar cells. Controlling the grain boundary structure, says Li, is a new direction that could help raise the cell efficiencies closer to the theoretical maximum of 32 percent light-to-energy conversion. Currently, the record CdTe cell efficiency is only 20.4 percent.

“We think that if all the grain boundaries in a thin film material could be aligned in same direction, it could improve cell efficiency even further,” Li said.

The team’s research appears as “Grain-Boundary-Enhanced Carrier Collection in CdTe Solar Cells.” Coauthors are ORNL’s Chen Li, Jonathan Poplawsky, Mark Oxley and Andrew Lupini; University of Toledo’s Yelong Wu, Naba Paudel, Wanjian Yin and Yanfa Yan; University of Tennessee’s Stephen Pennycook; University of Manchester’s Sarah Haigh; University of Oxford’s Timothy Pennycook; and NREL’s Mowafak Al-Jassim. Li and Oxley hold joint appointments at Vanderbilt University.

The research was supported by the Department of Energy’s Office of Energy Efficiency and Renewable Energy through the SunShot Initiative and the Office of Basic Energy Sciences. The work was sponsored in part by the UK Engineering and Physical Sciences Research Council and through a user project supported by ORNL’s Center for Nanophase Materials Sciences (CNMS). This research used resources of the National Energy Research Scientific Computing Center. Yan acknowledges support from the Ohio Research Scholar Program.

CNMS is one of the five DOE Nanoscale Science Research Centers, NSRCs, supported by the DOE Office of Science, as premier national user facilities for interdisciplinary research at the nanoscale. Together the NSRCs comprise a suite of complementary facilities that provide researchers with state-of-the-art capabilities to fabricate, process, characterize and model nanoscale materials, and constitute the largest infrastructure investment of the National Nanotechnology Initiative. The NSRCs are located at DOE's Argonne, Brookhaven, Lawrence Berkeley, Oak Ridge and Sandia and Los Alamos national laboratories.  For more information about the DOE NSRCs, please visit http://science.energy.gov/bes/suf/user-facilities/nanoscale-science-research-centers/.

ORNL is managed by UT-Battelle for the Department of Energy's Office of Science.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time.  For more information, please visit science.energy.gov.

Morgan McCorkle | Eurek Alert!
Further information:
http://www.ornl.gov/ornl/news/news-releases/2014/atomic-switcheroo-explains-origins-of-thin-film-solar-cell-mystery--

Further reports about: Atomic CdTe Computing Energy ORNL energy nanoscale responsible tellurium

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>