Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Atmospheric ‘Sunshade’ Could Reduce Solar Power Generation

13.03.2009
The concept of delaying global warming by adding particles into the upper atmosphere to cool the climate could unintentionally reduce peak electricity generated by large solar power plants by as much as one-fifth, according to a new NOAA study. The findings appear in this week’s issue of Environmental Science and Technology.

“Injecting particles into the stratosphere could have unintended consequences for one alternative energy source expected to play a role in the transition away from fossil fuels,” said author Daniel Murphy, a scientist at NOAA’s Earth System Research Laboratory in Boulder, Colo.

The Earth is heating up as fossil-fuel burning produces carbon dioxide, the primary heat-trapping gas responsible for man-made climate change. To counteract the effect, some geoengineering proposals are designed to slow global warming by shading the Earth from sunlight.

Among the ideas being explored is injecting small particles into the upper atmosphere to produce a climate cooling similar to that of large volcanic eruptions, such as Mt. Pinatubo’s in 1991. Airborne sulfur hovering in the stratosphere cooled the Earth for about two years following that eruption.

Murphy found that particles in the stratosphere reduce the amount and change the nature of the sunlight that strikes the Earth. Though a fraction of the incoming sunlight bounces back to space (the cooling effect), a much larger amount becomes diffuse, or scattered, light.

On average, for every watt of sunlight the particles reflect away from the Earth, another three watts of direct sunlight are converted to diffuse sunlight. Large power-generating solar plants that concentrate sunlight for maximum efficiency depend solely on direct sunlight and cannot use diffuse light.

Murphy verified his calculations using long-term NOAA observations of direct and diffuse sunlight before and after the 1991 eruption.

After the eruption of Mt. Pinatubo, peak power output of Solar Electric Generating Stations in California, the largest collective of solar power plants in the world, fell by up to 20 percent, even though the stratospheric particles from the eruption reduced total sunlight that year by less than 3 percent.

“The sensitivity of concentrating solar systems to stratospheric particles may seem surprising,” said Murphy. “But because these systems use only direct sunlight, increasing stratospheric particles has a disproportionately large effect on them.”

Nine Solar Electric Generating Stations operate in California and more are running or are under construction elsewhere in the world. In sunny locations such systems, which use curved mirrors or other concentrating devices, generate electricity at a lower cost than conventional photovoltaic, or solar, cells.

Flat photovoltaic and hot water panels, commonly seen on household roofs, use both diffuse and direct sunlight. Their energy output would decline much less than that from concentrating systems.

Even low-tech measures to balance a home’s energy, such as south-facing windows for winter heat and overhangs for summer shade, would be less effective if direct sunlight is reduced.

NOAA understands and predicts changes in the Earth's environment, from the depths of the ocean to the surface of the sun, and conserves and manages our coastal and marine resources.

Anatta | EurekAlert!
Further information:
http://www.noaa.gov

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>