Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ames Laboratory scientists develop indium-free organic light-emitting diodes

04.12.2012
Scientists at the U.S. Department of Energy’s (DOE) Ames Laboratory have discovered new ways of using a well-known polymer in organic light emitting diodes (OLEDs), which could eliminate the need for an increasingly problematic and breakable metal-oxide used in screen displays in computers, televisions, and cell phones.

The metal-oxide, indium tin oxide (ITO), is a transparent conductor used as the anode for flat screen displays, and has been the standard for decades. Due to indium's limited supply, increasing cost and the increasing demand for its use in screen and lighting technologies, the U.S. Department of Energy has designated indium as "near-critical" in its assessment of materials vital to clean energy technology. Scientists have been working to find an energy efficient, cost effective substitute.

“There are not many materials that are both transparent and electrically conductive,” said Joseph Shinar, an Ames Laboratory Senior Scientist. “One hundred percent of commercial display devices in the world use ITO as the transparent conducting electrode. There’s been a big push for many years to find alternatives.”

“Everybody is trying to find a replacement for ITO, many working with zinc oxide, another metal oxide. But here we are working towards something different, developing ways to use a conducting polymer,” said Min Cai, a post-doctoral research scientist in the Ames Laboratory and the Dept. of Physics and Astronomy at Iowa State University.

The polymer’s name is a mouthful of a word: poly (3,4-ethylene dioxythiophene):poly(styrene sulfonate), known as PEDOT:PSS for short, and has been around for about 15 years. Until recently, the material wasn’t sufficiently conductive or transparent enough to be a viable ITO substitute, Shinar said. But by using a multi-layering technique and special treatments, Cai and his fellow scientists were able to fabricate PEDOT:PSS OLEDs with vastly improved properties.

“Compared to an ITO anode device, the PEDOT:PSS device is at least 44 percent more efficient,” said Cai. According to Joe

Shinar, that gain in efficiency over ITO-based technology is the highest yet recorded.

The researchers used computer simulations to show that the enhanced performance is largely an effect of the difference in the optical properties between the polymer- and ITO-based devices.

Another key property of PEDOT:PSS is flexibility; using ITO in OLEDs defeats one of OLED’s big pluses compared to conventional LED technology.

“OLEDs can be made on a flexible substrate, which is one of their principal advantages over LEDs. But ITO is ceramic in nature; it is brittle rather than flexible,” said Ruth Shinar, a Senior Scientist at Iowa State University’s Microelectronics Research Center.

The findings, co-authored by Joseph Shinar and Ruth Shinar along with Min Cai, Zhuo Ye, Teng Xiao, Rui Liu, Ying Chen, Robert W. Mayer, Rana Biswas, and Kai-Ming Ho, were recently published in Advanced Materials, one of the most prominent journals in materials science and engineering.

The research builds on continuing work to find more affordable and efficient manufacturing materials and processes for OLED manufacturing. An earlier paper published in Advanced Materials by Joseph Shinar and Ruth Shinar along with Min Cai , Teng Xiao , Emily Hellerich , and Ying Chen demonstrated the use of solution processing for small molecule-based OLEDs, which are typically constructed using a more expensive thermal evaporation deposition process.

The scientists’ ongoing investigations into better materials and processes pave the way to more cost-efficient manufacturing and making OLED technology more widely available to consumers.

Joseph Shinar said that OLED televisions were already available to a limited high-end consumer, and that prices would come down as major manufacturers perfected their production processes. Both Samsung and LG exhibited a 55-inch OLED TV as a highlight feature of the 2012 Consumer Electronics Show in Las Vegas in January.

“We are already getting there with OLED televisions. Consumers will see them getting more affordable and more widely available in the very near future,” said Joseph Shinar.

Shinar said the technology was also beginning to be used in lighting, in applications where diffuse light is preferred instead of point source lighting, and in architectural and art design.
The research is supported by the U.S. Department of Energy’s Office of Science. DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit the Office of Science website at science.energy.gov/.

The Ames Laboratory is a U.S. Department of Energy Office of Science national laboratory operated by Iowa State University. The Ames Laboratory creates innovative materials, technologies and energy solutions. We use our expertise, unique capabilities and interdisciplinary collaborations to solve global problems.

Laura Millsaps | EurekAlert!
Further information:
http://www.ameslab.gov

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>