Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

"All systems go" for a paralyzed person to kick off the World Cup

11.06.2014

TUM technology endows brain-controlled exoskeleton with sense of touch

According to researchers in the Walk Again Project, all systems are go for a bold demonstration of neuroscience and cognitive technology in action: On June 12, during the opening of the FIFA 2014 World Cup in Brazil, a paralyzed person wearing a brain-controlled robotic exoskeleton is expected to make the first kick of the football championship.


Prof. Gordon Cheng, TUM Institute for Cognitive Systems, with a prototype of CellulARSkin.

(Photo: A. Heddergott / TUM)

The Walk Again Project is an international collaboration of more than one hundred scientists, led by Prof. Miguel Nicolelis of Duke University and the International Institute for Neurosciences of Natal, Brazil. Prof. Gordon Cheng, head of the Institute for Cognitive Systems at the Technische Universität München (TUM), is a leading partner.

Eight Brazilian patients, men and women between 20 and 40 years of age who are paralyzed from the waist down, have been training for months to use the exoskeleton. The system works by recording electrical activity in the patient's brain, recognizing his or her intention – such as to take a step or kick a ball – and translating that to action. It also gives the patient tactile feedback using sensitive artificial skin created by Cheng's institute.

The feeling of touching the ground

Inspiration for this so-called CellulARSkin technology – as well as for the Walk Again Project itself – came from a 2008 collaboration. As Cheng sums up that complex and widely reported experiment, "Miguel set up a monkey walking on a treadmill in North Carolina, and then I made my humanoid robot walk with the signal in Kyoto." It was a short step for the researchers to envision a paralyzed person walking with the help of a robotic exoskeleton that could be guided by mental activity alone.

"Our brains are very adaptive in the way that we can extend our embodiment to use tools," Cheng says, "as in driving a car or eating with chopsticks. After the Kyoto experiment, we felt certain that the brain could also liberate a paralyzed person to walk using an external body." It was clear that technical advances would be required to allow a relatively compact, lightweight exoskeleton to be assembled, and that visual feedback would not be enough. A sense of touch would be essential for the patient's emotional comfort as well as control over the exoskeleton. Thus the challenge was to give a paralyzed person, together with the ability to walk, the feeling of touching the ground.

A versatile solution

Upon joining TUM in 2010, Cheng made it a research priority for his institute to improve on the state of the art in tactile sensing for robotic systems. The result, CellulARSkin, provides a framework for a robust and self-organizing surface sensor network. It can be implemented using standard off-the-shelf hardware and thus will benefit from future improvements in miniaturization, performance, and cost.

The basic unit is a flat, six-sided package of electronic components including a low-power-consumption microprocessor as well as sensors that detect pre-touch proximity, pressure, vibration, temperature, and even movement in three-dimensional space. Any number of these individual "cells" can be networked together in a honeycomb pattern, protected in the current prototype by a rubbery skin of molded elastomer.

"It's not just the sensor that's important," Cheng says. "The intelligence of the sensor is even more important." Cooperation among the networked cells, and between the network and a central system, allows CellulARSkin to configure itself for each specific application and to recover automatically from certain kinds of damage. These capabilities offer advantages in enabling smarter, safer interaction of machines with people, and in rapid setup of industrial robots – as is being pursued in the EU-sponsored project "Factory in a Day."

In the Walk Again Project, CellulARSkin is being used in two ways. Integrated with the exoskeleton, for example on the bottoms of the feet, the artificial skin sends signals to tiny motors that vibrate against the patient's arms. Through training with this kind of indirect sensory feedback, a patient can learn to incorporate the robotic legs and feet into his or her own body schema. CellulARSkin is also being wrapped around parts of the patient's own body to help the medical team monitor for any signs of distress or discomfort.

A milestone, but "just the beginning"

"I think some people see the World Cup opening as the end," Cheng says, "but it's really just the beginning. This may be a major milestone, but we have a lot more work to do." He views the event as a public demonstration of what science can do for people. "Also, I see it as a great tribute to all the patients' hard work and their bravery!"

Contact:
Prof. Gordon Cheng
Institute for Cognitive Systems
Technische Universität München
Tel: +49 89 289 26800
gordon@tum.de

Further information:
www.ics.ei.tum.de
https://www.youtube.com/user/icsTUMunich
www.cellularskin.eu
www.factory-in-a-day.eu

Prof. Gordon Cheng | Technische Universität München

Further reports about: FIFA World Cup TUM activity artificial exoskeleton skin three-dimensional walk

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>