Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

AIXTRON partners with Fraunhofer IISB to enhance Silicon Carbide production technology

10.09.2014

AIXTRON, a leading provider of deposition equipment to the semiconductor industry, has teamed up with research institution Fraunhofer IISB (Institute for Integrated Systems and Device Technology) in Erlangen, Germany, to develop 150 mm Silicon Carbide (SiC) epitaxy processes using the new AIXTRON 8x150 mm G5WW Vapor Phase Epitaxy (VPE) system. AIXTRON’s Planetary Reactor® tool will be installed at the IISB cleanroom laboratory in the fourth quarter of 2014.

Dr. Jochen Friedrich, Head of Department Materials at Fraunhofer IISB, comments “Through this partnership we expect to further accelerate the implementation of 150 mm SiC technology in the industry by pairing our process know-how in manufacturing SiC epitaxial layers with AIXTRON’s SiC equipment expertise. We will use the G5WW production system for process optimization and demonstration purposes at the IISB facilities in Erlangen.”


Fraunhofer IISB and AIXTRON start research program on Silicon Carbide Production Technology based on Planetary Reactor AIX G5WW. AIXTRON SE

Fraunhofer IISB has developed fundamental understanding in low-defect-density SiC epitaxial processes which are elementary for the manufacturing of high voltage SiC devices. Special characterization techniques like room temperature photoluminescence imaging and selective defect etching have been developed and adapted to the SiC material properties at Fraunhofer IISB. In its laboratories complete SiC prototype devices can be processed and characterized.

Dr. Frank Wischmeyer, Vice President Power Electronics at AIXTRON, states “Based on the worldwide recognized experience of Fraunhofer IISB in SiC epitaxy technology and characterization, we will jointly enable the optimization of epitaxial production processes for 150 mm SiC wafers using our state-of-the-art G5WW production tool.

The goal of the collaboration is the demonstration of high-volume manufacturing processes addressing the SiC material requirements of SiC power devices. With this joined effort we do support AIXTRON customers worldwide moving from 100 mm to 150 mm SiC processing technology from the year 2015 to achieve efficient and economic manufacturing processes for future SiC power devices.”

Today, a variety of SiC devices like Schottky Diodes and Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) are commercially available and put into practical use in switch mode power supplies for computer servers and TVs, in solar power inverters and efficient power converters in UPS, medical equipment or commuter trains.

In order to facilitate a widespread adoption of SiC in power electronics cost reductions in SiC semiconductor material manufacturing and device processing are targeted by the implementation of the 150 mm SiC technology.

Contact:

Dr. Jochen Friedrich
Fraunhofer IISB, Schottkystrasse 10, 91058 Erlangen, Germany
Tel. +49-9131-761-270
Fax +49-9131-761-280
info@iisb.fraunhofer.de

About Fraunhofer Institute for Integrated Systems and Device Technology:

The Fraunhofer Institute for Integrated Systems and Device Technology IISB is one of the 67 institutes of the Fraunhofer-Gesellschaft. It conducts applied research and development in the fields of power electronics, mechatronics, micro and nano-electronics. A staff of 200 works in contract research for industry and public authorities. The institute is internationally acknowledged for its work on power electronic systems for energy efficiency, hybrid and electric cars and the development of technology, equipment, and materials for nano-electronics. In addition to its headquarters in Erlangen, the IISB has branch labs in Nuremberg and Freiberg. The institute closely cooperates with the Chair of Electron Devices of the Friedrich-Alexander-University Erlangen-Nuremberg.

Fraunhofer IISB offers extensive R&D services in SiC from materials development and prototype devices to module assembly and mechatronic systems. Based on the SiC toolbox of the institute, customers can utilize the services in order to perform, e.g., design studies, feasibility tests, proofs of concept, or prototype fabrication. Fraunhofer IISB offers competent partnership for contract research and development in bilateral cooperation with industry as well as in public-funded projects.

About AIXTRON:

AIXTRON SE is a leading provider of deposition equipment to the semiconductor industry. The Company was founded in 1983 and is headquartered in Herzogenrath (near Aachen), Germany, with subsidiaries and sales offices in Asia, United States and in Europe. AIXTRON’s technology solutions are used by a diverse range of customers worldwide to build advanced components for electronic and opto-electronic applications based on compound, silicon, or organic semiconductor materials. Such components are used in a broad range of innovative applications, technologies and industries. These include LED applications, display technologies, data storage, data transmission, energy management and conversion, communication, signalling and lighting as well as a range of other leading-edge technologies.

For further information on AIXTRON (FSE: AIXA, ISIN DE000A0WMPJ6; NASDAQ: AIXG, ISIN US0096061041) please visit the website at: http://www.aixtron.comaixtron.com

Weitere Informationen:

http://www.iisb.fraunhofer.de Homepage Fraunhofer IISB
http://www.aixtron.com Homepage AIXTRON SE

Kommunikation | Fraunhofer-Institute

Further reports about: Device IISB Silicon Technology materials offers processing semiconductor technologies

More articles from Power and Electrical Engineering:

nachricht Silicon solar cell of ISFH yields 25% efficiency with passivating POLO contacts
08.12.2016 | Institut für Solarenergieforschung GmbH

nachricht Robot on demand: Mobile machining of aircraft components with high precision
06.12.2016 | Fraunhofer IFAM

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>