Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

AIXTRON partners with Fraunhofer IISB to enhance Silicon Carbide production technology

10.09.2014

AIXTRON, a leading provider of deposition equipment to the semiconductor industry, has teamed up with research institution Fraunhofer IISB (Institute for Integrated Systems and Device Technology) in Erlangen, Germany, to develop 150 mm Silicon Carbide (SiC) epitaxy processes using the new AIXTRON 8x150 mm G5WW Vapor Phase Epitaxy (VPE) system. AIXTRON’s Planetary Reactor® tool will be installed at the IISB cleanroom laboratory in the fourth quarter of 2014.

Dr. Jochen Friedrich, Head of Department Materials at Fraunhofer IISB, comments “Through this partnership we expect to further accelerate the implementation of 150 mm SiC technology in the industry by pairing our process know-how in manufacturing SiC epitaxial layers with AIXTRON’s SiC equipment expertise. We will use the G5WW production system for process optimization and demonstration purposes at the IISB facilities in Erlangen.”


Fraunhofer IISB and AIXTRON start research program on Silicon Carbide Production Technology based on Planetary Reactor AIX G5WW. AIXTRON SE

Fraunhofer IISB has developed fundamental understanding in low-defect-density SiC epitaxial processes which are elementary for the manufacturing of high voltage SiC devices. Special characterization techniques like room temperature photoluminescence imaging and selective defect etching have been developed and adapted to the SiC material properties at Fraunhofer IISB. In its laboratories complete SiC prototype devices can be processed and characterized.

Dr. Frank Wischmeyer, Vice President Power Electronics at AIXTRON, states “Based on the worldwide recognized experience of Fraunhofer IISB in SiC epitaxy technology and characterization, we will jointly enable the optimization of epitaxial production processes for 150 mm SiC wafers using our state-of-the-art G5WW production tool.

The goal of the collaboration is the demonstration of high-volume manufacturing processes addressing the SiC material requirements of SiC power devices. With this joined effort we do support AIXTRON customers worldwide moving from 100 mm to 150 mm SiC processing technology from the year 2015 to achieve efficient and economic manufacturing processes for future SiC power devices.”

Today, a variety of SiC devices like Schottky Diodes and Metal-Oxide-Semiconductor Field-Effect Transistors (MOSFETs) are commercially available and put into practical use in switch mode power supplies for computer servers and TVs, in solar power inverters and efficient power converters in UPS, medical equipment or commuter trains.

In order to facilitate a widespread adoption of SiC in power electronics cost reductions in SiC semiconductor material manufacturing and device processing are targeted by the implementation of the 150 mm SiC technology.

Contact:

Dr. Jochen Friedrich
Fraunhofer IISB, Schottkystrasse 10, 91058 Erlangen, Germany
Tel. +49-9131-761-270
Fax +49-9131-761-280
info@iisb.fraunhofer.de

About Fraunhofer Institute for Integrated Systems and Device Technology:

The Fraunhofer Institute for Integrated Systems and Device Technology IISB is one of the 67 institutes of the Fraunhofer-Gesellschaft. It conducts applied research and development in the fields of power electronics, mechatronics, micro and nano-electronics. A staff of 200 works in contract research for industry and public authorities. The institute is internationally acknowledged for its work on power electronic systems for energy efficiency, hybrid and electric cars and the development of technology, equipment, and materials for nano-electronics. In addition to its headquarters in Erlangen, the IISB has branch labs in Nuremberg and Freiberg. The institute closely cooperates with the Chair of Electron Devices of the Friedrich-Alexander-University Erlangen-Nuremberg.

Fraunhofer IISB offers extensive R&D services in SiC from materials development and prototype devices to module assembly and mechatronic systems. Based on the SiC toolbox of the institute, customers can utilize the services in order to perform, e.g., design studies, feasibility tests, proofs of concept, or prototype fabrication. Fraunhofer IISB offers competent partnership for contract research and development in bilateral cooperation with industry as well as in public-funded projects.

About AIXTRON:

AIXTRON SE is a leading provider of deposition equipment to the semiconductor industry. The Company was founded in 1983 and is headquartered in Herzogenrath (near Aachen), Germany, with subsidiaries and sales offices in Asia, United States and in Europe. AIXTRON’s technology solutions are used by a diverse range of customers worldwide to build advanced components for electronic and opto-electronic applications based on compound, silicon, or organic semiconductor materials. Such components are used in a broad range of innovative applications, technologies and industries. These include LED applications, display technologies, data storage, data transmission, energy management and conversion, communication, signalling and lighting as well as a range of other leading-edge technologies.

For further information on AIXTRON (FSE: AIXA, ISIN DE000A0WMPJ6; NASDAQ: AIXG, ISIN US0096061041) please visit the website at: http://www.aixtron.comaixtron.com

Weitere Informationen:

http://www.iisb.fraunhofer.de Homepage Fraunhofer IISB
http://www.aixtron.com Homepage AIXTRON SE

Kommunikation | Fraunhofer-Institute

Further reports about: Device IISB Silicon Technology materials offers processing semiconductor technologies

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>