Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

AgriLife Research study estimates costs of mesquite biomass delivery for bioenergy use

28.06.2012
Operating on the thought that, if it is not feasible, it's not going to be done, a group of Texas AgriLife Research scientists is studying the costs of getting potential bioenergy sources such as mesquite to the processed stage.

AgriLife Research scientists from the Texas AgriLife Research and Extension Service center at Vernon, Dr. Seong Park, economist; Dr. Jim Ansley, range ecologist; Dr. Mustafa Mirik, associate research scientist; and Marc Maindrault, a visiting forestry student intern from France, have completed a study on costs of delivered biomass.

The costs of feedstock delivered to a fictional wood-fired bioelectricity plant were considered under two general biomass densities – moderate and high – and across two harvest scenarios in which the minimum biomass density acceptable for harvest within each area differed, Park said.

They found that higher harvest and transport costs are offset by essentially no production costs and therefore it may have potential as a bioenergy feedstock under certain densities and total land areas, Park said.

The study conducted a sensitivity analysis to determine how changes in a variety of factors would affect cost of delivered biomass to the power plant, he said. Values for the "best case" and "worst case" scenarios were $347 per acre and $561 per acre, respectively.

"The full economic story cannot be told until we have a clear end product," Park said. "That is why this study focused only on the costs of delivery of the biomass."

The variation of cost of biomass was found to be similar on both sites, although one site had a larger range of costs and higher risk than the other, Park said.

Because rangeland trees like mesquite and juniper occur naturally and have scattered distribution, he said key factors in determining economics is: total amount of land area involved and amount of land within the total area that has patches of brush of sufficient biomass density for harvest. These were called "suitable harvest areas."

"Our analysis found that biomass density and harvesting costs are the two major factors affecting cost of delivered biomass," Park said. "While biomass use – or capacity – of the bioelectricity plant and the percentage of suitable harvest areas strongly affect land-related factors, including feedstock transport costs, these have relatively minor effects on cost of delivered biomass compared to harvesting costs."

Most emphasis for the biofuel industry has been placed on feedstocks such as energy cane, perennial grasses and sweet sorghum because they can be grown in high density situations with lower harvest costs, he said. However, woody feedstocks are being evaluated for their potential benefits because they are not grown on cropland and require lower cultivation costs.

Woody species such as willows that grow in wetter climates have been considered. More recently, researchers like Ansley have been considering the potential of shrubs and trees on rangelands such as mesquite and juniper for bioenergy uses.

"These trees likely will not be considered for ethanol conversion – they won't result in liquid fuel for the automobile tank – but may have other uses as a bioenergy feedstock such as electricity generation," Ansley said.

Park said there are several advantages to mesquite and similar woody plants that may offset the lower growth rates and potentially higher harvest and transportation costs. Particularly, these plants are abundant in existence, are drought-tolerant and grow without additional costs of planting, cultivation, irrigation and fertilization. And they resprout after harvest.

Also, they don't grow on land typically needed to grow food crops, they have higher energy content than switchgrass and they can be harvested year-round, he said.

"Also, we found that water content of mesquite and juniper wood at harvest is lower than most cellulosic feedstocks; thus, drying costs could be reduced," Park said.

One major problem with mesquite as a feedstock is its variable growth form, which vary from tree to tree and stand to stand. Any harvesting operation would have to contend with this variation, he said. And the regrowth is much slower – about 10 years before it could be re-harvested. But the greater amount of available land area where this material grows offsets this to some degree.

"Harvesting the regrowth is a key factor in the long-term planning of this species as a bioenergy feedstock," Park said.

The study was based on several key assumptions, including that the bioenergy industry could use rangeland biomass through a system where harvesting and transportation would be vertically integrated, and that landowners would be willing to participate in a long-term contract with bioelectricity plants for a sustainable flow of product to the plant.

Location of the bioelectricity plant was centered relative to the location of the feedstock source in the scenarios studied, Park said.

If the industry grows large enough, custom harvesters dedicated to harvesting and transporting the mesquite would likely operate more efficiently than if the bioenergy company tried to maintain its own harvesting equipment.

The tougher growth form of mesquite and the remote locations where it will be harvested create a higher probability for downtime from mechanical failure that may be better absorbed by businesses that are solely dedicated to this task, he said.

Another difference in utilizing mesquite biomass compared to other dedicated energy crops is that the business arrangement would have to be made with multiple landowners to obtain enough stock to sustain the plant, Park said.

"The landowners would have to agree to have the mesquite trees harvested according to a long-term strategic plan that would include allowing the trees to resprout and grow to be harvested again in the future," he said.

Ansley said landowners would benefit from additional grass growth and increased livestock production for many years after a harvest, but would then have to allow the regrowth to get large enough to re-harvest. He estimated that in a 10-year re-harvest schedule, the landowner would have seven to eight years of increased grass production before it would begin to level off.

Dr. Jim Ansley | EurekAlert!
Further information:
http://www.tamu.edu

More articles from Power and Electrical Engineering:

nachricht Energy hybrid: Battery meets super capacitor
01.12.2016 | Technische Universität Graz

nachricht Tailor-Made Membranes for the Environment
30.11.2016 | Forschungszentrum Jülich

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>