Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Aggressive Efficiency and Electrification Needed to Cut California Emissions

25.05.2011
Berkeley Lab joint report offers a variety of scenarios to reduce emissions to 80% below 1990 levels.

In the next 40 years, California’s population is expected to surge from 37 million to 55 million and the demand for energy is expected to double. Given those daunting numbers, can California really reduce its greenhouse gas emissions to 80 percent below 1990 levels by 2050, as required by an executive order? Scientists from Lawrence Berkeley National Laboratory who co-wrote a new report on California’s energy future are optimistic that the target can be achieved, though not without bold policy and behavioral changes as well as some scientific innovation.

The report, titled “California’s Energy Future­­—The View to 2050,” ­draws a series of energy system “portraits” showing how California can meet its ambitious emissions targets using a combination of measures and energy sources that may include electrification, enhanced efficiency, nuclear energy, renewable energy sources, grid modernization, and carbon capture and sequestration (CCS).

The first 60 percent in emissions reductions can be realized with currently available technology, the report finds. “California can achieve emissions roughly 60 percent below 1990 levels with technology we largely know about today if such technology is rapidly deployed at rates that are aggressive but feasible,” the report says.

The remaining 20 percent reduction in emissions will have to come from advancements in several technologies still in development, which may include artificial photosynthesis, fusion energy, more efficient and sustainable biofuels, hydrogen fuel, more effective CCS and advanced batteries for both vehicles and grid storage. Berkeley Lab scientists are actively pursuing research in all of these areas.

If no measures are taken, emissions will likely double by 2050 relative to 1990 levels. With efficiency alone—including more efficient buildings, industrial facilities and vehicles—emissions could be held to 20 percent over 1990 levels.

The report was sponsored by the California Council on Science and Technology and funded by the California Energy Commission, the S.D. Bechtel Foundation and the California Air Resources Board. Berkeley Lab researchers Jeff Greenblatt, Jim McMahon and Max Wei were significant contributors and collaborated with analysts from several other institutions including UC Davis, UC Berkeley, Stanford University, Caltech and the Electric Power Research Institute.

One of the report’s major findings is that the state will need a very different electricity system that is better able to balance supply and demand while integrating more renewable energy sources such as wind and solar, which are intermittent. “The grid as it currently stands is entirely unsustainable,” says Greenblatt. “We’re going to see a very different grid in 2050 than we have now.”

McMahon, head of the Energy Analysis Department in the Environmental Energy Technologies Division, explains: “We need either more storage on the grid—whether with batteries or compressed air or something else—or a very intelligent system that’s able to respond to what’s available. For example, since the wind tends to blow more at night, a smarter system would heat your water at night when you have the power and store that water, and not in the morning when everybody wants to take a shower.”

Reducing emissions will require efforts on both the supply and demand side of the energy equation. Faster development of California’s diverse array of renewable energy resources—wind, solar, biomass, geothermal, hydro and offshore marine energy—will be needed to ensure an adequate supply of clean electricity, the report says. The scientists calculated that wind power, for example, would have to grow at 7.5 percent annually and solar at 12 percent annually. The report also considered the impact on land use from scaling up such operations; it estimated that 1.3 percent of the state’s land area would have to be devoted exclusively to renewables.

On the demand side, the report recommends aggressive efficiency measures, such as retrofitting 1.8 percent of all buildings every year starting now. “A lot of things have to start picking up speed this decade so that by 2020 we have significant momentum. We need to do work now for things to start to amplify,” Greenblatt says. And McMahon adds: “Cars and appliances last a long time, 15 to 20 years, and power plants and buildings even longer—50 years or more. That’s why we can’t wait. We don’t want to lock in inefficient things.”

While bold policy initiatives are likely needed to ensure that homeowners, industry and other players make the necessary changes, McMahon notes a silver lining: “The good news is efficiency has gotten less costly as we’ve gotten more experience with it.”

The report recommends simultaneously electrifying as much as possible by switching from fuels such as natural gas or petroleum to electricity. Uses that can be electrified include space heating, water heating, vehicles, domestic cooking and bus and rail fleets.

Another important component on the demand side is human behavior. Based on previously published studies suggesting changes in behavior can affect emissions by as much as 20 percent, the report assumed a 10 percent impact and listed a variety of possible changes. “It’s things like changing your diet, changing transportation to carpool more and use public transit, thermostat setbacks so you’re cooling or heating your house a little less, eco-driving—in Europe they’ve taught people how to drive more efficiently,” McMahon says. “If you had 10 percent of people telecommuting, you’d have 10 percent less traffic.”

The Berkelely Lab scientists find cause for optimism. Already, for example, Americans are eating less red meat than they did a generation ago, which is beneficial for the environment. “There’s portion of the population very interested in green living. I tend to think it’s generational—there are a lot of young people trying to figure out how to live more sustainably on the earth,” McMahon says. “So over time they may have more and more say over what we do.”

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 12 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

Julie Chao | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Early organic carbon got deep burial in mantle

25.04.2017 | Earth Sciences

A room with a view - or how cultural differences matter in room size perception

25.04.2017 | Life Sciences

Warm winds: New insight into what weakens Antarctic ice shelves

25.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>