Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Advanced nuclear fuel sets global performance record

18.11.2009
Idaho National Laboratory (INL) scientists have set a new world record with next-generation particle fuel for use in high temperature gas reactors (HTGRs).

The Advanced Gas Reactor (AGR) Fuel Program, initiated by the Department of Energy in 2002, used INL's unique Advanced Test Reactor (ATR) in a nearly three-year experiment to subject more than 300,000 nuclear fuel particles to an intense neutron field and temperatures around 1,250 degrees Celsius.

INL researchers say the fuel experiment set the record for particle fuel by consuming approximately 19 percent of its low-enriched uranium — more than double the previous record set by similar experiments run by German scientists in the 1980s and more than three times that achieved by current light water reactor (LWR) fuel. Additionally, none of the fuel particles experienced failure since entering the extreme neutron irradiation test environment of the ATR in December 2006.

"This level of performance is a major accomplishment," said Dr. David Petti, Director of the Very High Temperature Reactor Technology Development Office at the U.S. Department of Energy's INL. The purpose of the fuel program is to develop this particle fuel, produce experimental data that demonstrates to the Nuclear Regulatory Commission that the fuel is robust and safe, and re-establish a U.S. fuel manufacturing capability for high temperature gas reactors. INL has been working with Babcock and Wilcox Inc., General Atomics and Oak Ridge National Laboratory (ORNL) to establish standards and procedures for the manufacture of commercial-scale HTGR fuel. The overarching goal of the AGR Fuel Program is to qualify coated nuclear fuel particles for use in HTGRs such as the Next Generation Nuclear Plant (NGNP). Developing particle fuel capable of achieving very high burnup levels will also reduce the amount of used fuel that is generated by HTGRs.

"An important part of our mission is the development and exploration of advanced nuclear science and technology," said Dr. Warren F. "Pete" Miller, assistant secretary for Nuclear Energy. "This achievement is an important step as we work to enable the next generation of reactors, decrease fossil fuel use in industrial applications, make fuel cycles more sustainable, and reduce proliferation risks."

"AGR-1" is the first of eight similar experiments which aim to confirm designs and fabrication processes and performance characteristics for such fuel. Future AGR fuel tests will include particle fuel produced on a prototypic industrial scale to further prove the irradiation performance of the NGNP-specific fuel design. The 18-foot-long AGR-1 experiment was inserted in INL's ATR core and allowed for each of six capsules containing the particle fuel specimens to be monitored and controlled separately. Inside the ATR core, the fuel specimens were subjected to neutron irradiation many times higher than what they would experience inside an HTGR or a current light water reactor, allowing INL researchers to gain irradiation performance data for nuclear fuel and materials in a shorter time. The team is monitoring the AGR fuel for a number of factors including "burn-up," which is a measurement of the percent of uranium fuel that has undergone fission reactions.

Although the experiment has now left the ATR, researchers still have more work to do before the AGR-1 test campaign will be finished. Post irradiation examination (PIE) will begin at INL and ORNL facilities and allow scientists to examine the fuel up close so that the fuel and its layers of coatings can be evaluated for degradation patterns and other characteristics. In addition, controlled higher temperature testing in furnaces is planned to determine the safety performance of the fuel under postulated accident conditions. These activities will last another two years.

The Next Generation Nuclear Plant Program aims to use a high temperature gas reactor to produce high temperature process heat and hydrogen used by many industrial facilities in daily operations and to support the broader goal of developing the next generation of nuclear power systems that provide abundant carbon-free electricity on a 24/7 basis. Excellent fuel irradiation performance must be demonstrated before high temperature gas reactors can be licensed and co-located with these complementary industrial facilities. Reaching this world record peak burn-up of 19 percent without any particle failure demonstrates the robustness of this particle fuel design.

INL is one of the DOE's 10 multi program national laboratories. The laboratory performs work in each of the strategic goal areas of DOE: energy, national security, science and environment. INL is the nation's leading center for nuclear energy research and development. Day-to-day management and operation of the laboratory is the responsibility of Battelle Energy Alliance

Teri Ehresman | EurekAlert!
Further information:
http://www.inl.gov

Further reports about: AGR AGR-1 ATR Advanced Investigator Grant Fuel cells HTGR INL Nuclear ORNL nuclear fuel nuclear fuel particles

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>