Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new trophallactic strategy for multiple unmanned aerial vehicles flying in formation

21.06.2013
The autonomous flying of multiple UAVs in formation is an important research area in the aerospace field.

Professor DUAN Haibin and his group members (LUO Qinan and YU Yaxiang) from the Science and Technology in Aircraft Control Laboratory, School of Automation Science and Electrical Engineering, Beihang University set out to tackle this problem. Through 5 years of innovative research, they investigated the trophallactic mechanism behind social insects and developed a novel trophallaxis network control method for formation flight.

They transferred the trophallaxis scenario to the context of a multi-UAV flight scenario and successfully tested and evaluated a new control strategy. Their work, entitled "Trophallaxis network control approach to formation flight of multiple unmanned aerial vehicles", was published in SCIENCE CHINA Technological Sciences, 2013, Vol. 56(5).

In recent years, formation control of multiple UAVs has become a challenging interdisciplinary research topic, while autonomous formation flight is an important research area in the aerospace field. The main motivation is the wide range of possible military and civilian applications, where UAV formations could provide a low cost and efficient alternative to existing technology. Researchers and clinicians have developed many methods to address the formation problem. Despite all efforts, currently available formation control methods ignore network effects. The UAV group would perform their flight missions according to an existing database received by the navigation system and various sensors. Therefore, the stability of a UAV group is usually affected by the network characteristics, and there is an urgent need for network control strategies with better efficacy.

Trophallactic is a new swarm search algorithm. This new mechanism is based on the trophallactic behavior of social insects, animals and birds, such as ants, bees, wasps, sheep, dogs, sparrows and swallows. Trophallaxis is the exchange of fluid by direct mouth-to-mouth contact. Animal studies revealed that trophallaxis can reinforce the exchange and sharing of information between individual animals. By imitating that behavior and considering the communication requirements of the network control system, a network control method was proposed. The method was derived from the following example. A honeybee that finds the feeder fills its nectar crop with the offered sugar solution, and if the bee meets another bee on its way, there can be trophallactic contact. The higher the metabolic rate of the bee is, the higher this consumption rate will be. The attractive aspect of the trophallaxis mechanism is the ability to incorporate information transfer as a biological process and use global information to generate an optimal control sequence at each time step.

The virtual leader is employed in the formation flight model, and two trophallaxis strategies—the empty call and donation mechanisms—were considered to implement information transfer. In the process of formation, all UAVs, including the virtual leader, have the ability to conduct trophallaxis. The virtual leader sends updated task information and other UAVs update task information during their sampling period through the trophallaxis network.

In the trophallaxis network control system, each UAV obtains a control sequence based on the task commands and its own state, and transfers underlying information to the trophallaxis network (as shown in the figure). In the trophallaxis network environment, communication lines are shared and information flow changes irregularly, and network analysis becomes very complicated owing to the existence of time delay. The analysis of the network performance is easily achieved by dividing time delays into sensor–controller delay and controller–actuator delay.

This research project was supported in part by a grant from the National Natural Science Foundation of China. It is an important breakthrough in the recent history of formation flight. The researchers suggest that their work needs to be put into practice and examined in the formation control field and that the trophallactic mechanisms of social insects should be further studied. These efforts will have significant impact on the formation control of various (marine, ground, aeronautical, and astronautical) vehicle systems.

See the article: Duan H B, Luo Q N, Yu Y X. Trophallaxis network control approach to formation flight of multiple unmanned aerial vehicles. Sci China Tech Sci, 2013, Vol. 56 (5): 1066, http://tech.scichina.com:8082/sciEe/EN/abstract/abstract510833.shtml

Science China Press Co., Ltd. (SCP) is a scientific journal publishing company of the Chinese Academy of Sciences (CAS). For 50 years, SCP takes its mission to present to the world the best achievements by Chinese scientists on various fields of natural sciences researches.

DUAN Haibin | EurekAlert!
Further information:
http://www.buaa.edu.cn
http://zh.scichina.com/english/

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>