Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A Tram that Withstands Desert Climates


Siemens has successfully tested the desert suitability of a streetcar system that it developed specifically for the Emirate of Qatar.

Siemens performed the tests at the climate-wind tunnel of the Rail-Tec-Arsenal in Vienna, Austria, where it simulated the streetcar’s operation in Qatar’s summer heat. Despite an exterior temperature of 40 degrees Celsius and 30 percent humidity, the temperature inside the fully occupied streetcar was a comfortable 25 degrees.

Siemens is constructing a state-of-the-art turnkey tram system comprising 19 streetcars in Qatar's capital city of Doha. In the picture: the climate-wind tunnel of the Rail-Tec-Arsenal in Vienna, Austria.

In addition, passengers were always supplied with sufficient amounts of fresh air. Although the desert streetcar is based on the Avenio platform, it is also equipped with high-performance air conditioners, special roof-mounted shading systems, and very good insulation.

The Rail-Tec-Arsenal climate test lab, which is partly owned by Siemens, is a unique facility where trains up to 100 meters in length can be subjected to all kinds of weather and operating scenarios. A huge fan generates airstreams, and large fields of intense halogen lamps simulate the sun’s rays.

Users can set the humidity and create rain or snow. Passenger-related effects are simulated by air humidifiers and heat pads on the seats. The doors are opened and closed in accordance with the stops along the streetcar’s future route. To test the streetcar for Qatar, Siemens squeezed a complete 27-meter-long vehicle into the tunnel, where it was subjected to a variety of conditions.

No Overhead Lines Needed

Siemens is building a streetcar route that is more than 11 kilometers long in Qatar’s capital city, Doha. The system will be turnkey-ready and will include all of the associated infrastructure. The project includes the construction of 25 stations and a depot as well as the delivery of 19 state-of-the-art Avenio streetcars.

The Doha streetcar system will be Siemens’ first streetcar route to operate without overhead lines. The vehicles will instead be equipped with energy storage devices that will recharge themselves at stops through special roof conductor rails. The streetcar system is scheduled to enter service in 2016.

To accomplish this, Siemens developed the Sitras HES hybrid energy storage device, which combines a double-layer capacitor with a nickel-metal hydride battery. The storage device enables the streetcar to travel without overhead lines and also to recover braking energy.

As a result, a typical streetcar’s energy demand may be reduced by up to 30 percent and its CO2 emissions by up to 80 metric tons. The storage device enables the streetcar to travel up to 2.5 kilometers before it has to be recharged.

To ensure that the new streetcar route in Qatar requires no overhead lines, the distances between stops do not exceed this maximum range. The streetcar consumes electricity from the grid when it begins to move, as this requires an especially large amount of energy. After that, the electricity is supplied by the energy storage devices. In the climate-wind tunnel, Siemens also tested the charging cycles of the energy storage system under all of the climate conditions that are expected to occur in Qatar.
Christine Rüth

Mr. Dr Norbert Aschenbrenner

Editorial Office

Siemens AG

Mr. Florian Martini

Journalist Inquieries

Siemens AG

Christine Rüth | Siemens - Pictures of the Future

More articles from Power and Electrical Engineering:

nachricht 'Super yeast' has the power to improve economics of biofuels
18.10.2016 | University of Wisconsin-Madison

nachricht Engineers reveal fabrication process for revolutionary transparent sensors
14.10.2016 | University of Wisconsin-Madison

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>