Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A tight fit helps energy transmit

17.08.2009
Mechanically trapped molecules throw light on energy transfer within artificial photosynthetic systems

Although plants have efficiently captured energy from sunlight for millions of years, producing light-harvesting and energy storage devices based on photosynthesis is no easy task.

Now, a research team led by Makoto Fujita from the University of Tokyo and Tahei Tahara from the RIKEN Advanced Science Institute has found a simple way to mimic the initial stage of photosynthesis by mechanically trapping a guest molecule inside a cage structure1.

Prototypical artificial photosynthetic systems contain donor- and acceptor-type molecules. When light is absorbed by the donor, it becomes photo-excited—its electrons move to higher energy states. The acceptor group can receive and store these energetic electrons, but only if the donor and acceptor come together into what is known as an exciplex, or an excited state complex.

The difficulty is bringing together the donor and acceptor groups. An exciplex can form only if the two components are close enough and in the proper orientation during photo-excitation.

Fujita and Tahara’s team ensured exciplex formation by locking a photoactive donor molecule called bisanthracene inside a molecular cage acceptor. The self-assembled cage is highly water soluble as it contains six charged palladium atoms. The cage panels, however, are organic molecules and form a hydrophobic (water-repelling) pocket inside the cage when dissolved in water.

According to Jeremy Klosterman, the lead author of the study, the donor molecule bisanthracene is not soluble in water and, at high temperatures, is driven into the hydrophobic cage pocket. Once the solution cools, the bisanthracene is too large to exit the cage and remains trapped inside.

“Synthetically, our system is incredibly straightforward,” says Klosterman. “Simply mixing the host cage and the guest bisanthracene in water and heating causes the exciplex to self-assemble.”

Ultrafast laser spectroscopy of the host–guest complex found that the excited bisanthracene donor transferred the majority of its energy, 82%, to the exciplex state. Klosterman says the effective energy transfer is due to the extremely tight fit and strong interactions between the mechanically linked host and guest.

“This study helped us resolve an important question,” states Klosterman. Typically fluorescent molecules are non-emissive upon encapsulation by cages, but now they can infer that energy transfer into the host–guest exciplex state decreases the fluorescence lifetime.

By choosing a guest molecule that does not form an exciplex, the researchers have developed a new water-soluble fluorescent dye with a long lifetime—ideal for applications including biological sensing and imaging.

Reference

1. Klosterman, J.K., Iwamura, M., Tahara, T. & Fujita. M. Energy transfer in a mechanically trapped exciplex. Journal of the American Chemical Society 131, 9478–9479 (2009).

The corresponding authors for this highlight are based at the RIKEN Molecular Spectroscopy Laboratory and the School of Engineering, University of Tokyo

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/research/759/
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht Linear potentiometer LRW2/3 - Maximum precision with many measuring points
17.05.2017 | WayCon Positionsmesstechnik GmbH

nachricht First flat lens for immersion microscope provides alternative to centuries-old technique
17.05.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>