Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A tight fit helps energy transmit

17.08.2009
Mechanically trapped molecules throw light on energy transfer within artificial photosynthetic systems

Although plants have efficiently captured energy from sunlight for millions of years, producing light-harvesting and energy storage devices based on photosynthesis is no easy task.

Now, a research team led by Makoto Fujita from the University of Tokyo and Tahei Tahara from the RIKEN Advanced Science Institute has found a simple way to mimic the initial stage of photosynthesis by mechanically trapping a guest molecule inside a cage structure1.

Prototypical artificial photosynthetic systems contain donor- and acceptor-type molecules. When light is absorbed by the donor, it becomes photo-excited—its electrons move to higher energy states. The acceptor group can receive and store these energetic electrons, but only if the donor and acceptor come together into what is known as an exciplex, or an excited state complex.

The difficulty is bringing together the donor and acceptor groups. An exciplex can form only if the two components are close enough and in the proper orientation during photo-excitation.

Fujita and Tahara’s team ensured exciplex formation by locking a photoactive donor molecule called bisanthracene inside a molecular cage acceptor. The self-assembled cage is highly water soluble as it contains six charged palladium atoms. The cage panels, however, are organic molecules and form a hydrophobic (water-repelling) pocket inside the cage when dissolved in water.

According to Jeremy Klosterman, the lead author of the study, the donor molecule bisanthracene is not soluble in water and, at high temperatures, is driven into the hydrophobic cage pocket. Once the solution cools, the bisanthracene is too large to exit the cage and remains trapped inside.

“Synthetically, our system is incredibly straightforward,” says Klosterman. “Simply mixing the host cage and the guest bisanthracene in water and heating causes the exciplex to self-assemble.”

Ultrafast laser spectroscopy of the host–guest complex found that the excited bisanthracene donor transferred the majority of its energy, 82%, to the exciplex state. Klosterman says the effective energy transfer is due to the extremely tight fit and strong interactions between the mechanically linked host and guest.

“This study helped us resolve an important question,” states Klosterman. Typically fluorescent molecules are non-emissive upon encapsulation by cages, but now they can infer that energy transfer into the host–guest exciplex state decreases the fluorescence lifetime.

By choosing a guest molecule that does not form an exciplex, the researchers have developed a new water-soluble fluorescent dye with a long lifetime—ideal for applications including biological sensing and imaging.

Reference

1. Klosterman, J.K., Iwamura, M., Tahara, T. & Fujita. M. Energy transfer in a mechanically trapped exciplex. Journal of the American Chemical Society 131, 9478–9479 (2009).

The corresponding authors for this highlight are based at the RIKEN Molecular Spectroscopy Laboratory and the School of Engineering, University of Tokyo

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/research/759/
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Periodic ventilation keeps more pollen out than tilted-open windows

29.03.2017 | Health and Medicine

Researchers discover dust plays prominent role in nutrients of mountain forest ecoystems

29.03.2017 | Earth Sciences

OLED production facility from a single source

29.03.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>