Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Surprise: China’s Energy Consumption Will Stabilize

28.04.2011
New Berkeley Lab study forecasts peak in energy use in China within 20 years.

As China’s economy continues to soar, its energy use and greenhouse gas emissions will keep on soaring as well—or so goes the conventional wisdom. A new analysis by researchers at Lawrence Berkeley National Laboratory (Berkeley Lab) now is challenging that notion, one widely held in both the United States and China.

Well before mid-century, according to a new study by Berkeley Lab’s China Energy Group, that nation’s energy use will level off, even as its population edges past 1.4 billion. “I think this is very good news,’’ says Mark Levine, co-author of the report, “China’s Energy and Carbon Emissions Outlook to 2050,” and director of the group. “There’s been a perception that China’s rising prosperity means runaway growth in energy consumption. Our study shows this won’t be the case.”

Along with China’s rise as a world economic power have come a rapid climb in energy use and a related boost in man-made carbon dioxide emissions. In fact, China overtook the United States in 2007 as the world’s leading emitter of greenhouse gases.

Yet according to this new forecast, the steeply rising curve of energy demand in China will begin to moderate between 2030 and 2035 and flatten thereafter. There will come a time—within the next two decades—when the number of people in China acquiring cars, larger homes, and other accouterments of industrialized societies will peak. It’s a phenomenon known as saturation. “Once nearly every household owns a refrigerator, a washing machine, air conditioners and other appliances, and once housing area per capita has stabilized, per household electricity growth will slow,’’ Levine explains.

Similarly, China will reach saturation in road and rail construction before the 2030-2035 time frame, resulting in very large decreases in iron and steel demand. Additionally, other energy-intensive industries will see demand for their products flatten.

The Berkeley Lab report also anticipates the widespread use of electric cars, a significant drop in reliance on coal for electricity generation, and a big expansion in the use of nuclear power—all helping to drive down China’s CO2 emissions. Although China has temporarily suspended approvals of new nuclear power plant construction in the wake of the disaster at Japan’s Fukushima Daiichi Nuclear Power Station, the long-range forecast remains unchanged.

Key to the new findings is a deeper look at patterns of energy demand in China: a “bottom-up” modeling system that develops projections of energy use in far greater detail than standard methods and which is much more time- and labor-intensive to undertake. Work on the project has been ongoing for the last four years. “Other studies don’t have this kind of detail,’’ says Levine. “There’s no model outside of China that even comes close to having this kind of information, such as our data on housing stock and appliances.”

Not only does the report examine demand for appliances such as refrigerators and fans, it also makes predictions about adoption of improvements in the energy efficiency of such equipment – just as Americans are now buying more efficient washing machines, cars with better gas-mileage, and less power-hungry light bulbs.

Berkeley Lab researchers Nan Zhou, David Fridley, Michael McNeil, Nina Zheng, and Jing Ke co-authored the report with Levine. Their study is a “scenario analysis” that forecasts two possible energy futures for China, one an “accelerated improvement scenario” that assumes success for a very aggressive effort to improve energy efficiency, the other a more conservative “continued improvement scenario” that meets less ambitious targets. Yet both of these scenarios, at a different pace, show similar moderation effects and a flattening of energy consumption well before 2050.

Under the more aggressive scenario, energy consumption begins to flatten in 2025, just 14 years from now. The more conservative scenario sees energy consumption rates beginning to taper in 2030. By the mid-century mark, energy consumption under the “accelerated improvement scenario” will be 20 percent below that of the other.

Scenario analysis is also used in more conventional forecasts, but these are typically based on macroeconomic variables such as gross domestic product and population growth. Such scenarios are developed “without reference to saturation, efficiency, or usage of energy-using devices, e.g., air conditioners,’’ says the Berkeley Lab report. “For energy analysts and policymakers, this is a serious omission, in some cases calling into question the very meaning of the scenarios.’’

The new Berkeley Lab forecast also uses the two scenarios to examine CO2 emissions anticipated through 2050. Under the more aggressive scenario, China’s emissions of the greenhouse gas are predicted to peak in 2027 at 9.7 billion metric tons. From then on, they will fall significantly, to about 7 billion metric tons by 2050. Under the more conservative scenario, CO2 emissions will reach a plateau of 12 billion metric tons by 2033, and then trail down to 11 billion metric tons at mid-century.

Several assumptions about China’s efforts to “decarbonize” its energy production and consumption are built into the optimistic forecasts for reductions in the growth of greenhouse gas emissions. They include:

A dramatic reduction in coal’s share of energy production, to as low as 30 percent by 2050, compared to 74 percent in 2005
An expansion of nuclear power from 8 gigwatts in 2005 to 86 gigawatts by 2020, followed by a rise to as much as 550 gigawatts in 2050
A switch to electric cars. The assumption is that urban private car ownership will reach 356 million vehicles by 2050. Under the “continued improvement scenario,” 30 percent of these will be electric; under the “accelerated improvement scenario,” 70 percent will be electric.

The 72-page report by Levine and colleagues at Berkeley Lab’s Environmental Energy Technologies Division was summarized in a briefing to U.S. Congressional staffers. The study was carried out under contract with the U.S. Department of Energy, using funding from the China Sustainable Energy Program, a partnership of the David and Lucile Packard Foundation and the Energy Foundation.

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 12 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

Julie Chao | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Early organic carbon got deep burial in mantle

25.04.2017 | Earth Sciences

A room with a view - or how cultural differences matter in room size perception

25.04.2017 | Life Sciences

Warm winds: New insight into what weakens Antarctic ice shelves

25.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>