Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A*STAR Institute of Microelectronics and leading semiconductor companies team up to develop cooling solutions for high power high performance applications

19.03.2014

A*STAR Institute of Microelectronics (IME) has launched the Silicon Micro Cooler (SMC) consortium to develop integrated thermal management solutions for semiconductor chips with extreme high heat dissipation and local hot spots applications.

1. Singapore, 18 March 2014 – A*STAR Institute of Microelectronics (IME) has launched the Silicon Micro Cooler (SMC) consortium to develop integrated thermal management solutions for semiconductor chips with extreme high heat dissipation and local hot spots applications. Members of the consortium include Honeywell Aerospace, Element Six Technologies and an information and telecommunications company.

2. Thermal management is an important technology area that impacts the performance and reliability of high power high performance applications, such as datacenter and networking systems. As the electronics industry continues to trend towards smaller form factor, greater functionality and faster processing speed, the high power dissipation across a smaller chip area can result in hot spots. These are usually high heat flux concentrated in small areas, which could lead to extremely high junction temperature and drastic breakdown of integrated circuits devices.

3. The SMC consortium builds on the R&D capabilities of IME in the field of thermal and fluidics design, deep trench etching, wafer level bonding and system level characterization competency. It aims to develop technologies for thermal solutions required for high heat flux application, develop heat sink design with advanced thermal materials such as synthetic diamond heat spreader, silicon-based micro fabrication, wafer bonding technologies, and demonstrate integrated hybrid silicon micro coolers that are capable of heat dissipation for processors, RF amplifiers and laser diodes applications.

... more about:
»A*STAR »IME »Microelectronics »SMC »Science »synthetic

4. “It is critical for thermal management solutions to keep pace with the increasing requirements of high performance semiconductor modules. Through a collaborative platform where we integrate R&D knowledge with the expertise of stakeholders in the value chain, we believe that the consortium will be successful in the development of novel cooling techniques that will enable the continued advancement of these high performance semiconductor modules,” commented Professor Dim-Lee Kwong, Executive Director of A*STAR IME.

 5. “Synthetic diamond has the highest room-temperature thermal conductivity of any commercially available material, and will play an integral role in addressing the semiconductor industry’s ever increasing thermal management challenge. Key to maximizing synthetic diamond’s effectiveness is the method of its integration into device packages. The SMC consortium will provide a critical platform for Element Six to work with industry partners, to optimize diamond package integration and drive future benefits of this technology for the industry as a whole,” said Bruce Bolliger, Senior Director of Element Six Technologies.

6. “Participating in A*STAR IME’s SMC Consortium is a further step in proactively contributing to the aerospace industry with unique and innovative projects and solutions. We look forward to a successful collaboration with our IME consortium partners in Singapore and are very confident that the collaboration will contribute to our mutual success,” commented Dr. Soeren Wiener, Director AME Engineering Technology Programs of Honeywell Aerospace.

Media Contact:
For IME:
Chua Yi Fen
Marketing & Communications, IME
Tel: +65 6770 5378
Email: chuayif@ime.a-star.edu.sg


Jessica Sasayiah
Senior Officer, Corporate Communications
Institute of Microelectronics, A*STAR
Tel: +65 6770 5376
Email: sasayiahj@scei.a-star.edu.sg


About A*STAR Institute of Microelectronics (IME)
The Institute of Microelectronics (IME) is a research institute of the Science and Engineering Research Council of the Agency for Science, Technology and Research (A*STAR). Positioned to bridge the R&D between academia and industry, IME's mission is to add value to Singapore's semiconductor industry by developing strategic competencies, innovative technologies and intellectual property; enabling enterprises to be technologically competitive; and cultivating a technology talent pool to inject new knowledge to the industry. Its key research areas are in integrated circuits design, advanced packaging, bioelectronics and medical devices, MEMS, nanoelectronics, and photonics. For more information about IME, please visit https://www.ime.a-star.edu.sg.

About Agency for Science, Technology and Research (A*STAR)
The Agency for Science, Technology and Research (A*STAR) is Singapore's lead public sector agency that fosters world-class scientific research and talent to drive economic growth and transform Singapore into a vibrant knowledge-based and innovation driven economy. In line with its mission-oriented mandate, A*STAR spearheads research and development in fields that are essential to growing Singapore’s manufacturing sector and catalysing new growth industries. A*STAR supports these economic clusters by providing intellectual, human and industrial capital to its partners in industry. A*STAR oversees 18 biomedical sciences and physical sciences and engineering research entities, located in Biopolis and Fusionopolis as well as their vicinity. These two R&D hubs house a bustling and diverse community of local and international research scientists and engineers from A*STAR’s research entities as well as a growing number of corporate laboratories. Please visit www.a-star.edu.sg

Associated links

Lee Swee Heng | ResearchSEA News
Further information:
http://www.researchsea.com

Further reports about: A*STAR IME Microelectronics SMC Science synthetic

More articles from Power and Electrical Engineering:

nachricht Producing electricity during flight
20.09.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Solar-to-fuel system recycles CO2 to make ethanol and ethylene
19.09.2017 | DOE/Lawrence Berkeley National Laboratory

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>