Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A*STAR Institute of Microelectronics and leading semiconductor companies team up to develop cooling solutions for high power high performance applications

19.03.2014

A*STAR Institute of Microelectronics (IME) has launched the Silicon Micro Cooler (SMC) consortium to develop integrated thermal management solutions for semiconductor chips with extreme high heat dissipation and local hot spots applications.

1. Singapore, 18 March 2014 – A*STAR Institute of Microelectronics (IME) has launched the Silicon Micro Cooler (SMC) consortium to develop integrated thermal management solutions for semiconductor chips with extreme high heat dissipation and local hot spots applications. Members of the consortium include Honeywell Aerospace, Element Six Technologies and an information and telecommunications company.

2. Thermal management is an important technology area that impacts the performance and reliability of high power high performance applications, such as datacenter and networking systems. As the electronics industry continues to trend towards smaller form factor, greater functionality and faster processing speed, the high power dissipation across a smaller chip area can result in hot spots. These are usually high heat flux concentrated in small areas, which could lead to extremely high junction temperature and drastic breakdown of integrated circuits devices.

3. The SMC consortium builds on the R&D capabilities of IME in the field of thermal and fluidics design, deep trench etching, wafer level bonding and system level characterization competency. It aims to develop technologies for thermal solutions required for high heat flux application, develop heat sink design with advanced thermal materials such as synthetic diamond heat spreader, silicon-based micro fabrication, wafer bonding technologies, and demonstrate integrated hybrid silicon micro coolers that are capable of heat dissipation for processors, RF amplifiers and laser diodes applications.

... more about:
»A*STAR »IME »Microelectronics »SMC »Science »synthetic

4. “It is critical for thermal management solutions to keep pace with the increasing requirements of high performance semiconductor modules. Through a collaborative platform where we integrate R&D knowledge with the expertise of stakeholders in the value chain, we believe that the consortium will be successful in the development of novel cooling techniques that will enable the continued advancement of these high performance semiconductor modules,” commented Professor Dim-Lee Kwong, Executive Director of A*STAR IME.

 5. “Synthetic diamond has the highest room-temperature thermal conductivity of any commercially available material, and will play an integral role in addressing the semiconductor industry’s ever increasing thermal management challenge. Key to maximizing synthetic diamond’s effectiveness is the method of its integration into device packages. The SMC consortium will provide a critical platform for Element Six to work with industry partners, to optimize diamond package integration and drive future benefits of this technology for the industry as a whole,” said Bruce Bolliger, Senior Director of Element Six Technologies.

6. “Participating in A*STAR IME’s SMC Consortium is a further step in proactively contributing to the aerospace industry with unique and innovative projects and solutions. We look forward to a successful collaboration with our IME consortium partners in Singapore and are very confident that the collaboration will contribute to our mutual success,” commented Dr. Soeren Wiener, Director AME Engineering Technology Programs of Honeywell Aerospace.

Media Contact:
For IME:
Chua Yi Fen
Marketing & Communications, IME
Tel: +65 6770 5378
Email: chuayif@ime.a-star.edu.sg


Jessica Sasayiah
Senior Officer, Corporate Communications
Institute of Microelectronics, A*STAR
Tel: +65 6770 5376
Email: sasayiahj@scei.a-star.edu.sg


About A*STAR Institute of Microelectronics (IME)
The Institute of Microelectronics (IME) is a research institute of the Science and Engineering Research Council of the Agency for Science, Technology and Research (A*STAR). Positioned to bridge the R&D between academia and industry, IME's mission is to add value to Singapore's semiconductor industry by developing strategic competencies, innovative technologies and intellectual property; enabling enterprises to be technologically competitive; and cultivating a technology talent pool to inject new knowledge to the industry. Its key research areas are in integrated circuits design, advanced packaging, bioelectronics and medical devices, MEMS, nanoelectronics, and photonics. For more information about IME, please visit https://www.ime.a-star.edu.sg.

About Agency for Science, Technology and Research (A*STAR)
The Agency for Science, Technology and Research (A*STAR) is Singapore's lead public sector agency that fosters world-class scientific research and talent to drive economic growth and transform Singapore into a vibrant knowledge-based and innovation driven economy. In line with its mission-oriented mandate, A*STAR spearheads research and development in fields that are essential to growing Singapore’s manufacturing sector and catalysing new growth industries. A*STAR supports these economic clusters by providing intellectual, human and industrial capital to its partners in industry. A*STAR oversees 18 biomedical sciences and physical sciences and engineering research entities, located in Biopolis and Fusionopolis as well as their vicinity. These two R&D hubs house a bustling and diverse community of local and international research scientists and engineers from A*STAR’s research entities as well as a growing number of corporate laboratories. Please visit www.a-star.edu.sg

Associated links

Lee Swee Heng | ResearchSEA News
Further information:
http://www.researchsea.com

Further reports about: A*STAR IME Microelectronics SMC Science synthetic

More articles from Power and Electrical Engineering:

nachricht New Path to Loss-Free Electricity
24.04.2015 | Department of Energy, Office of Science

nachricht Giant Magnetic Effects Induced in Hybrid Materials
24.04.2015 | Department of Energy, Office of Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fast and Accurate 3-D Imaging Technique to Track Optically-Trapped Particles

KAIST researchers published an article on the development of a novel technique to precisely track the 3-D positions of optically-trapped particles having complicated geometry in high speed in the April 2015 issue of Optica.

Daejeon, Republic of Korea, April 23, 2015--Optical tweezers have been used as an invaluable tool for exerting micro-scale force on microscopic particles and...

Im Focus: NOAA, Tulane identify second possible specimen of 'pocket shark' ever found

Pocket sharks are among the world's rarest finds

A very small and rare species of shark is swimming its way through scientific literature. But don't worry, the chances of this inches-long vertebrate biting...

Im Focus: Drexel materials scientists putting a new spin on computing memory

Ever since computers have been small enough to be fixtures on desks and laps, their central processing has functioned something like an atomic Etch A Sketch, with electromagnetic fields pushing data bits into place to encode data.

Unfortunately, the same drawbacks and perils of the mechanical sketch board have been just as pervasive in computing: making a change often requires starting...

Im Focus: Exploding stars help to understand thunderclouds on Earth

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was discovered, more or less by coincidence, that cosmic rays provide suitable probes to measure electric fields within thunderclouds. This surprising finding is published in Physical Review Letters on April 24th. The measurements were performed with the LOFAR radio telescope located in the Netherlands.

How is lightning initiated in thunderclouds? This is difficult to answer - how do you measure electric fields inside large, dangerously charged clouds? It was...

Im Focus: On the trail of a trace gas

Max Planck researcher Buhalqem Mamtimin determines how much nitrogen oxide is released into the atmosphere from agriculturally used oases.

In order to make statements about current and future air pollution, scientists use models which simulate the Earth’s atmosphere. A lot of information such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

HHL Energy Conference on May 11/12, 2015: Students Discuss about Decentralized Energy

23.04.2015 | Event News

“Developing our cities, preserving our planet”: Nobel Laureates gather for the first time in Asia

23.04.2015 | Event News

HHL's Entrepreneurship Conference on FinTech

13.04.2015 | Event News

 
Latest News

Electrons Move Like Light in Three-Dimensional Solid

24.04.2015 | Materials Sciences

Connecting Three Atomic Layers Puts Semiconducting Science on Its Edge

24.04.2015 | Materials Sciences

Understanding the Body’s Response to Worms and Allergies

24.04.2015 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>