Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A*STAR IME develops ultra low power analog-to-digital converter for medical devices and wireless sensor nodes.

Researchers from A*STAR IME have developed an analog-to-digital converter (ADC) that uses only 400 nW, the lowest power consumption reported to date amongst today’s standard processing technology.

The novel converter design decreases the total power consumption of an implantable 100-channel neural recording microsystem by more than 20%, reducing the patient’s exposure to electromagnetic radiation in the brain tissue when powered wirelessly during the data acquisition of complex brain activity for medical purposes. The converter can also prolong the battery life of other wearable and implantable medical devices and wireless sensor nodes.

The ability to extend the battery life and reduce the electromagnetic radiation exposure from implantable devices will significantly reduce the patient’s cost, risk and invasiveness of the surgical procedures involved. Neuroprosthetics, which serve to restore motor functions in paralysed patients due to impaired nervous systems, can potentially benefit from IME’s low power ADC technology.

Elaborating on the research breakthrough, Dr Cheong Jia Hao, the IME scientist who conceptualised and designed the converter integrated circuits (ICs), said, “The ADC employs a tri-level switching scheme to achieve an elegant and simplified digital logic design.
By reducing the capacitor charging voltage and the number of complex arithmetic steps in each data conversion cycle, we can boost the energy efficiency to just 19.5 fJ per conversion step, which contributes to significant total power savings without sacrificing data resolution and affecting other hardware features.” The converter is fabricated with 0.18 micrometre CMOS processes, a mature standard processing technology for large volume production.

Professor Dim-Lee Kwong, Executive Director of IME, said, “IME’s data converter is in synergy with industry’s roadmap to drive energy efficient and sustainable solutions. The power saving highlight in the new technology can also be harnessed for applications that require intensive data conversion and where ultra low power consumption is paramount. The ultra low power converter will become one of the key elements in emerging wireless sensor networks, sensor clouds, and sensor fusion for various important applications such as environmental monitoring, industrial monitoring and control, green buildings, smart transportation, and e-health.”

Media Contact:
SONG Shin Miin
Institute of Microelectronics
DID: +65 6770 5317
About the Institute of Microelectronics (IME)
The Institute of Microelectronics (IME) is a research institute of the Science and Engineering Research Council of the Agency for Science, Technology and Research (A*STAR). Positioned to bridge the R&D between academia and industry, IME's mission is to add value to Singapore's semiconductor industry by developing strategic competencies, innovative technologies and intellectual property; enabling enterprises to be technologically competitive; and cultivating a technology talent pool to inject new knowledge to the industry. Its key research areas are in integrated circuits design, advanced packaging, bioelectronics and medical devices, MEMS, nanoelectronics, and photonics. For more information, visit IME on the Internet:

About the Agency for Science, Technology and Research (A*STAR)

The Agency for Science, Technology and Research (A*STAR) is the lead agency for fostering world-class scientific research and talent for a vibrant knowledge-based and innovation-driven Singapore. A*STAR oversees 14 biomedical sciences, and physical sciences and engineering research institutes, and seven consortia & centre, which are located in Biopolis and Fusionopolis, as well as their immediate vicinity. A*STAR supports Singapore's key economic clusters by providing intellectual, human and industrial capital to its partners in industry. It also supports extramural research in the universities, hospitals, research centres, and with other local and international partners.

Bernadette Lee | Research asia research news
Further information:

More articles from Power and Electrical Engineering:

nachricht Fluorescent holography: Upending the world of biological imaging
25.10.2016 | Colorado State University

nachricht Did you know that infrared heating is an essential part of automotive manufacture?
25.10.2016 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

Indian roadside refuse fires produce toxic rainbow

26.10.2016 | Health and Medicine

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

More VideoLinks >>>