Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A smarter way to make ultraviolet light beams

30.11.2011
Existing coherent ultraviolet light sources are power hungry, bulky and expensive. University of Michigan researchers have found a better way to build compact ultraviolet sources with low power consumption that could improve information storage, microscopy and chemical analysis.

A paper on the research is newly published in Optics Express. The research was led by Mona Jarrahi and Tal Carmon, assistant professors in the Department of Electrical Engineering and Computer Science. The experiment was performed by Jeremy Moore and Matthew Tomes, both graduate students in the same department.

The researchers have optimized a type of optical resonator to take an infrared signal from relatively cheap telecommunication-compatible lasers and, using a low-power, nonlinear process, boost it to a higher-energy ultraviolet beam.

Their optical resonator is a millimeter-scale disk with a precisely engineered shape and smooth surface polishing to encourage the input beam to gain power as it circulates inside the resonator.

"We optimized the structure to achieve high gain over a broad range of optical wavelengths," Jarrahi said. "This allows us to make low-cost, wavelength-tunable ultraviolet sources using low-infrared power levels."

The researchers used their resonator to generate the fourth harmonic of the infrared beam they started with.

Like the harmonic distortions you get from new sound frequencies when you crank up a loudspeaker, engineers can generate harmonics of light by using the right materials. By pushing light beams through a nonlinear medium, they can coax out offshoot beams that are double, or in this case, quadruple the frequency and energy of the input beam, and one-quarter of the original wavelength.

Lasers get progressively more difficult to generate and more inefficient, as engineers aim for shorter wavelengths, the researchers said.

"As we go from green to blue, the efficiency of the laser goes down. Going to UV lasers is even harder," Jarrahi said. "This principle was first suggested by Einstein and is the reason why green laser pointers do not actually contain a green laser. It is actually a red laser and its wavelength is divided by two to become green light."

Ultraviolet light sources have applications in chemical detection, crisper medical imaging and finer lithography for more sophisticated integrated circuits and greater computer memory capacity.

The paper is titled "Continuous-wave ultraviolet emission through fourth-harmonic generation in a whispering-gallery resonator." The research was funded by the National Science Foundation and the Air Force Office of Scientific Research.

The University of Michigan College of Engineering is ranked among the top engineering schools in the country. At more than $130 million annually, its engineering research budget is one of largest of any public university. Michigan Engineering is home to 11 academic departments and a National Science Foundation Engineering Research Center. The college plays a leading role in the Michigan Memorial Phoenix Energy Institute and hosts the world class Lurie Nanofabrication Facility. Michigan Engineering's premier scholarship, international scale and multidisciplinary scope combine to create The Michigan Difference. Find out more at http://www.engin.umich.edu/.

Nicole Casal Moore | EurekAlert!
Further information:
http://www.engin.umich.edu/
http://www.ns.umich.edu/new/releases/20093-a-smarter-way-to-make-ultraviolet-light-beams

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>