Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A smart fluorescent antenna for Wi-Fi applications


A new invention uses ionized gas in fluorescent light tubes to transmit Internet wireless frequency signals throughout a building with the aid of already existing electrical wiring.

Due to continuously evolving applications, the electronic communications industry requires high performance and speed efficient systems. However, the physical limitations of microwave devices limits further improvements in current technology. This predicament has led to growing interest in the use of plasma as a conductive element in microwave devices due to their unique and innovative properties, which corresponds with traditional metallic antennas.

A charged argon gas in the fluorescent lamp emits Wi-Fi signals.

Copyright : Faculty of Electrical Engineering, Universiti Teknologi MARA

Matter exists in four different states: solid, liquid, gas and plasma. Plasma is a type of gas in which the atoms are ionized – they have both free negatively charged electrons and positively charged ions. These charged particles can be controlled by electromagnetic fields, allowing plasmas to be used as a controllable reactive gas.

This invention employs an ionized gas enclosed in a tube as the conducting element of an antenna. When the gas is electrically charged or ionized to plasma, it becomes conductive and allows radio frequency signals to be transmitted or received. When the gas is not ionized, the antenna element ceases to exit.

The invention features a smart fluorescent antenna with a 3G/3.75G/4G router for Wi-Fi applications. The antenna operates at the 2.4 GHz frequency band, which is suitable for Wi-Fi applications.

A commercially available fluorescent tube, measuring 0.61 metres in length by 0.25 metres in diameter, is used as the plasma antenna. The gas inside the tube is a mixture of argon and mercury vapour, in the ratio 9:1. The tube is energized by a 240 V current, provided by a standard AC power supply.

A glowing tube indicates that the gas inside the tube has been ionized to plasma and forms a plasma column. In this state, the plasma column becomes highly conductive and can be used as an antenna.

A coupling sleeve is positioned at the lower end of the tube, which is used to connect the plasma tube to the router. The function of the coupling sleeves is to store the electrical charge. When the gas inside the tube is sufficiently ionized into a plasma state, it becomes conductive and allows radio frequency signals to be transmitted or received.

Measurements indicate that the plasma antenna yields a return loss over 10 dB in the 2.23 GHz to 2.58 GHz frequency band. The antenna's ability to operate as either a transmitter or receiver in this particular frequency band was verified through a series of wireless transmission experiments.

The performance of this antenna was measured using the Wi-Fi Received Signal Strength Indicator (RSSI) technique. The product was tested for a month in the Universiti Teknologi MARA's High Frequency Antenna Laboratory. Our results show that the signal is stronger and more stable compared to others signals.

One advantage of this product is its low cost. The Wi-Fi signal can be transmitted into other rooms using only one router with a splitter cable. The fluorescent tube has dual functionality, thereby reducing the cost of buying additional antennas. Commercial antennas are made from metal elements while this invention uses plasma element as its source of material. Normal antennas can only transmit and receive radio frequencies, while this product not only can be used for transmitting and receiving radio frequency signals, but as a light emitting device as well.

For further information contact:

Mohd Tarmizi Ali
Faculty of Electrical Engineering
Universiti Teknologi MARA

Darmarajah Nadarajah | Research SEA News
Further information:

Further reports about: GHz Teknologi UiTM Wi-Fi electrons fluorescent invention signals technique

More articles from Power and Electrical Engineering:

nachricht Discovery about new battery overturns decades of false assumptions
07.10.2015 | Oregon State University

nachricht New polymer creates safer fuels
02.10.2015 | California Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Reliable in-line inspections of high-strength automotive body parts within seconds

Nondestructive material testing (NDT) is a fast and effective way to analyze the quality of a product during the manufacturing process. Because defective materials can lead to malfunctioning finished products, NDT is an essential quality assurance measure, especially in the manufacture of safety-critical components such as automotive B-pillars. NDT examines the quality without damaging the component or modifying the surface of the material. At this year's Blechexpo trade fair in Stuttgart, Fraunhofer IZFP will have an exhibit that demonstrates the nondestructive testing of high-strength automotive body parts using 3MA. The measurement results are available in a matter of seconds.

To minimize vehicle weight and fuel consumption while providing the highest level of crash safety, automotive bodies are reinforced with elements made from...

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Unexpected information about Earth's climate history from Yellow River sediment

09.10.2015 | Earth Sciences

Single atom alloy platinum-copper catalysts cut costs, boost green technology

09.10.2015 | Life Sciences

Indefatigable Hearing

09.10.2015 | Life Sciences

More VideoLinks >>>