Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A smart fluorescent antenna for Wi-Fi applications

02.09.2014

A new invention uses ionized gas in fluorescent light tubes to transmit Internet wireless frequency signals throughout a building with the aid of already existing electrical wiring.

Due to continuously evolving applications, the electronic communications industry requires high performance and speed efficient systems. However, the physical limitations of microwave devices limits further improvements in current technology. This predicament has led to growing interest in the use of plasma as a conductive element in microwave devices due to their unique and innovative properties, which corresponds with traditional metallic antennas.


A charged argon gas in the fluorescent lamp emits Wi-Fi signals.

Copyright : Faculty of Electrical Engineering, Universiti Teknologi MARA

Matter exists in four different states: solid, liquid, gas and plasma. Plasma is a type of gas in which the atoms are ionized – they have both free negatively charged electrons and positively charged ions. These charged particles can be controlled by electromagnetic fields, allowing plasmas to be used as a controllable reactive gas.

This invention employs an ionized gas enclosed in a tube as the conducting element of an antenna. When the gas is electrically charged or ionized to plasma, it becomes conductive and allows radio frequency signals to be transmitted or received. When the gas is not ionized, the antenna element ceases to exit.

The invention features a smart fluorescent antenna with a 3G/3.75G/4G router for Wi-Fi applications. The antenna operates at the 2.4 GHz frequency band, which is suitable for Wi-Fi applications.

A commercially available fluorescent tube, measuring 0.61 metres in length by 0.25 metres in diameter, is used as the plasma antenna. The gas inside the tube is a mixture of argon and mercury vapour, in the ratio 9:1. The tube is energized by a 240 V current, provided by a standard AC power supply.

A glowing tube indicates that the gas inside the tube has been ionized to plasma and forms a plasma column. In this state, the plasma column becomes highly conductive and can be used as an antenna.

A coupling sleeve is positioned at the lower end of the tube, which is used to connect the plasma tube to the router. The function of the coupling sleeves is to store the electrical charge. When the gas inside the tube is sufficiently ionized into a plasma state, it becomes conductive and allows radio frequency signals to be transmitted or received.

Measurements indicate that the plasma antenna yields a return loss over 10 dB in the 2.23 GHz to 2.58 GHz frequency band. The antenna's ability to operate as either a transmitter or receiver in this particular frequency band was verified through a series of wireless transmission experiments.

The performance of this antenna was measured using the Wi-Fi Received Signal Strength Indicator (RSSI) technique. The product was tested for a month in the Universiti Teknologi MARA's High Frequency Antenna Laboratory. Our results show that the signal is stronger and more stable compared to others signals.

One advantage of this product is its low cost. The Wi-Fi signal can be transmitted into other rooms using only one router with a splitter cable. The fluorescent tube has dual functionality, thereby reducing the cost of buying additional antennas. Commercial antennas are made from metal elements while this invention uses plasma element as its source of material. Normal antennas can only transmit and receive radio frequencies, while this product not only can be used for transmitting and receiving radio frequency signals, but as a light emitting device as well.

For further information contact:

Mohd Tarmizi Ali
Faculty of Electrical Engineering
Universiti Teknologi MARA
Email: mizi732002@salam.uitm.edu.my

Darmarajah Nadarajah | Research SEA News
Further information:
http://inforec.uitm.edu.my
http://www.researchsea.com

Further reports about: GHz Teknologi UiTM Wi-Fi electrons fluorescent invention signals technique

More articles from Power and Electrical Engineering:

nachricht Ultra-Thin Hollow Nanocages Could Reduce Platinum Use in Fuel Cell Electrodes
27.07.2015 | Georgia Institute of Technology

nachricht Did you know that specialty light sources are used to ensure the quality of baby food?
27.07.2015 | Heraeus Noblelight GmbH

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

Im Focus: NASA satellite camera provides 'EPIC' view of Earth

A NASA camera on the Deep Space Climate Observatory (DSCOVR) satellite has returned its first view of the entire sunlit side of Earth from one million miles away.

The color images of Earth from NASA's Earth Polychromatic Imaging Camera (EPIC) are generated by combining three separate images to create a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Possible Path Toward First Anti-MERS Drugs

28.07.2015 | Life Sciences

Smart Hydrogel Coating Creates “Stick-slip” Control of Capillary Action

28.07.2015 | Materials Sciences

Are Fish Getting High on Cocaine?

28.07.2015 | Ecology, The Environment and Conservation

VideoLinks
B2B-VideoLinks
More VideoLinks >>>