Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


A small connection with big implications: Wiring up carbon-based electronics


Research carried out at UPV/EHU, DIPC and CNRS advances the understanding of electric contacts in future carbon-based nanoelectronics

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered in the nanoscale, that is, in the dimension of a millionth of millimetre, are promising candidates to envision applications in nanoscale devices, ranging from energy conversion to nano-electronic transistors.

Artistic view of an electric connection between a carbon-based "football" molecule and a single metallic atom (gray ball). The researchers were able to quantify how the current depends on the chemical nature of the contacting atom.

A good connection between carbon-based materials and external metallic leads is of major importance in nanodevice performance, an aspect where an important step has been surmounted by researchers from UPV/EHU, DIPC and CNRS by studying contacts of carbon nanostructures with atoms of different chemical nature.

The chemical nature of contacting leads is of major importance as it affects the electronic properties and the geometry of the contact. The impact of these two aspects on the transport properties are entangled and this group studied these two parameters for contacts shrunk to the limit of individual atoms as for large structures it is challenging to address them separately.

In close collaboration, the researchers used a prototype carbon-based molecule made of 60 carbon atoms arranged in a sphere that can be viewed as a graphene sheet rolled into a tiny ball. The experimental team in Strasbourg led by Guillaume Schull, attached this molecule to the apex of an extremely tiny metal needle of a scanning tunnelling microscope.

The molecule-terminated needle was then cautiously approached to individual metallic atoms of different chemical nature up to the formation of a robust connection. By simultaneously measuring the electrical current passing through these connections, they could deduce which of the individual metallic atom is injecting charges to the carbon-made molecule with the greatest efficiency.

Large-scale computer simulations performed by the theoretical team in San Sebastian led by Thomas Frederiksen, Ikerbasque Research Professor at the DIPC, revealed a fascinating and unexpected aspect of these extremely tiny connections: their electric and mechanical properties are in fact representative for much larger carbon-based materials.

These results, published in the prestigious journal Nature Communications, set the bases to find extremely efficient contacts in the near future. The study paves the way to probe a great number of different metallic species (as well as tiny alloys made of two or three different metallic atoms), allowing for a systematic classification of their abilities to inject electrons into emerging carbon-based electronic devices.

Full research publication (open access)
Chemical control of electrical contact to sp2 carbon atoms
T. Frederiksen, G. Foti, F. Scheurer, V. Speisser, & G. Schul. Nature Communications (2014).
DOI: 10.1038/ncomms4659

Thomas Frederiksen | Eurek Alert!
Further information:

More articles from Power and Electrical Engineering:

nachricht Greater Range and Longer Lifetime
26.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

nachricht 3-D-printed magnets
26.10.2016 | Vienna University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>