Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A simpler route to hollow carbon spheres

11.10.2013
Microporous walls and a huge surface area help nanoparticles to boost lithium-ion battery performance

Hollow carbon nanoparticles are strong, conduct electricity well and have a remarkably large surface area. They show promise in applications such as water filtration, hydrogen storage and battery electrodes - but commercial use would demand reliable, low-cost ways for their production.

Xu Li of Singapore's A*STAR Institute of Materials Research and Engineering and co-workers have developed a simple manufacturing technique that offers precise control over the size and shape of hollow carbon nanospheres1.

A current method for preparing these particles involves coating a hard template, such as silica nanoparticles, with a carbon-based material that can be fused into a shell using extreme heat. This is a laborious process, and etching away the template requires harsh chemicals. Heating hollow polystyrene nanospheres achieves similar results but offers poor control over the size and shape of the resulting carbon nanoparticles.

Li and co-workers combined a block copolymer called F127, consisting of poly(ethylene oxide) and poly(propylene oxide), with donut-shaped a-cyclodextrin molecules in water. After heating the mixture to 200°C, the molecules self-assembled into hollow nanoparticles with a 97.5% yield.

The water-repelling poly (propylene oxide) parts of the polymer stuck together to form hollow spheres, leaving poly (ethylene oxide) molecules dangling from the outside. The a-cyclodextrin rings then threaded onto these strands, packing around the outside of the sphere to form a stable shell. Using a higher proportion of F127 in the mix produced larger nanospheres, ranging from 200 to 400 nanometers in diameter. Heating these particles to 900°C in inert gases burned off the polymer to make hollow carbon nanoparticles.

The smallest nanospheres were 122 nanometers across and had 14 nanometer-thick walls dotted with tiny pores roughly 1 nanometer wide. Each gram of this material had a surface area of 317.5 square meters, which is greater than a tennis court.

The researchers used a slurry of particles to coat a copper foil and tested it as the anode in a lithium-ion battery. They found that the particles had a reversible charging capacity of 462 milliampere hours per gram - higher than graphite, a typical anode material - and could be recharged at least 75 times without significant loss of performance. The pores apparently allow lithium ions to migrate to the inside surfaces of the spheres. "Changing the porosity could improve the transport process for higher performance," suggests Li. The team now plans to incorporate metal and metal oxide materials into the hollow carbon nanospheres to further enhance their properties.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering

Associated links
http://www.research.a-star.edu.sg/research/6761
Journal information
Yang, Z.-C., Zhang, Y., Kong, J.-H., Wong, S. Y., Li, X. & Wang, J. Hollow carbon nanoparticles of tunable size and wall thickness by hydrothermal treatment of a-cyclodextrin templated by F127 block copolymers. Chemistry of Materials 25, 704−710 (2013).

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>