Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A simpler route to hollow carbon spheres

11.10.2013
Microporous walls and a huge surface area help nanoparticles to boost lithium-ion battery performance

Hollow carbon nanoparticles are strong, conduct electricity well and have a remarkably large surface area. They show promise in applications such as water filtration, hydrogen storage and battery electrodes - but commercial use would demand reliable, low-cost ways for their production.

Xu Li of Singapore's A*STAR Institute of Materials Research and Engineering and co-workers have developed a simple manufacturing technique that offers precise control over the size and shape of hollow carbon nanospheres1.

A current method for preparing these particles involves coating a hard template, such as silica nanoparticles, with a carbon-based material that can be fused into a shell using extreme heat. This is a laborious process, and etching away the template requires harsh chemicals. Heating hollow polystyrene nanospheres achieves similar results but offers poor control over the size and shape of the resulting carbon nanoparticles.

Li and co-workers combined a block copolymer called F127, consisting of poly(ethylene oxide) and poly(propylene oxide), with donut-shaped a-cyclodextrin molecules in water. After heating the mixture to 200°C, the molecules self-assembled into hollow nanoparticles with a 97.5% yield.

The water-repelling poly (propylene oxide) parts of the polymer stuck together to form hollow spheres, leaving poly (ethylene oxide) molecules dangling from the outside. The a-cyclodextrin rings then threaded onto these strands, packing around the outside of the sphere to form a stable shell. Using a higher proportion of F127 in the mix produced larger nanospheres, ranging from 200 to 400 nanometers in diameter. Heating these particles to 900°C in inert gases burned off the polymer to make hollow carbon nanoparticles.

The smallest nanospheres were 122 nanometers across and had 14 nanometer-thick walls dotted with tiny pores roughly 1 nanometer wide. Each gram of this material had a surface area of 317.5 square meters, which is greater than a tennis court.

The researchers used a slurry of particles to coat a copper foil and tested it as the anode in a lithium-ion battery. They found that the particles had a reversible charging capacity of 462 milliampere hours per gram - higher than graphite, a typical anode material - and could be recharged at least 75 times without significant loss of performance. The pores apparently allow lithium ions to migrate to the inside surfaces of the spheres. "Changing the porosity could improve the transport process for higher performance," suggests Li. The team now plans to incorporate metal and metal oxide materials into the hollow carbon nanospheres to further enhance their properties.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering

Associated links
http://www.research.a-star.edu.sg/research/6761
Journal information
Yang, Z.-C., Zhang, Y., Kong, J.-H., Wong, S. Y., Li, X. & Wang, J. Hollow carbon nanoparticles of tunable size and wall thickness by hydrothermal treatment of a-cyclodextrin templated by F127 block copolymers. Chemistry of Materials 25, 704−710 (2013).

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht Researchers pave the way for ionotronic nanodevices
23.02.2017 | Aalto University

nachricht Microhotplates for a smart gas sensor
22.02.2017 | Toyohashi University of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>