Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A simpler route to hollow carbon spheres

11.10.2013
Microporous walls and a huge surface area help nanoparticles to boost lithium-ion battery performance

Hollow carbon nanoparticles are strong, conduct electricity well and have a remarkably large surface area. They show promise in applications such as water filtration, hydrogen storage and battery electrodes - but commercial use would demand reliable, low-cost ways for their production.

Xu Li of Singapore's A*STAR Institute of Materials Research and Engineering and co-workers have developed a simple manufacturing technique that offers precise control over the size and shape of hollow carbon nanospheres1.

A current method for preparing these particles involves coating a hard template, such as silica nanoparticles, with a carbon-based material that can be fused into a shell using extreme heat. This is a laborious process, and etching away the template requires harsh chemicals. Heating hollow polystyrene nanospheres achieves similar results but offers poor control over the size and shape of the resulting carbon nanoparticles.

Li and co-workers combined a block copolymer called F127, consisting of poly(ethylene oxide) and poly(propylene oxide), with donut-shaped a-cyclodextrin molecules in water. After heating the mixture to 200°C, the molecules self-assembled into hollow nanoparticles with a 97.5% yield.

The water-repelling poly (propylene oxide) parts of the polymer stuck together to form hollow spheres, leaving poly (ethylene oxide) molecules dangling from the outside. The a-cyclodextrin rings then threaded onto these strands, packing around the outside of the sphere to form a stable shell. Using a higher proportion of F127 in the mix produced larger nanospheres, ranging from 200 to 400 nanometers in diameter. Heating these particles to 900°C in inert gases burned off the polymer to make hollow carbon nanoparticles.

The smallest nanospheres were 122 nanometers across and had 14 nanometer-thick walls dotted with tiny pores roughly 1 nanometer wide. Each gram of this material had a surface area of 317.5 square meters, which is greater than a tennis court.

The researchers used a slurry of particles to coat a copper foil and tested it as the anode in a lithium-ion battery. They found that the particles had a reversible charging capacity of 462 milliampere hours per gram - higher than graphite, a typical anode material - and could be recharged at least 75 times without significant loss of performance. The pores apparently allow lithium ions to migrate to the inside surfaces of the spheres. "Changing the porosity could improve the transport process for higher performance," suggests Li. The team now plans to incorporate metal and metal oxide materials into the hollow carbon nanospheres to further enhance their properties.

The A*STAR-affiliated researchers contributing to this research are from the Institute of Materials Research and Engineering

Associated links
http://www.research.a-star.edu.sg/research/6761
Journal information
Yang, Z.-C., Zhang, Y., Kong, J.-H., Wong, S. Y., Li, X. & Wang, J. Hollow carbon nanoparticles of tunable size and wall thickness by hydrothermal treatment of a-cyclodextrin templated by F127 block copolymers. Chemistry of Materials 25, 704−710 (2013).

A*STAR Research | Research asia research news
Further information:
http://www.a-star.edu.sg
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>