Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A simple slice of energy storage

02.08.2011
Rice University lab uses lasers to write supercapacitors on sheets of graphite oxide

Turning graphite oxide (GO) into full-fledged supercapacitors turns out to be simple. But until a laboratory at Rice University figured out how, it was anything but obvious.

Rice Professor Pulickel Ajayan and his team discovered they could transform a sheet of GO into a functional supercapacitor by writing patterns into it with a laser. Scientists already knew that the heat of a laser could convert GO -- the oxidized form of graphite, or carbon-based pencil lead -- into electrically conducting reduced graphite oxide (RGO). By writing patterns of RGO into thin sheets of GO, the Rice researchers effectively turned them into free-standing supercapacitors with the ability to store and release energy over thousands of cycles.

The discovery was reported this week in the online edition of Nature Nanotechnology.

The surprising find was that GO, when hydrated, can hold ions and serve as a solid electrolyte and an electrically insulating separator. "This is quite easy, as GO soaks up water like a sponge and can hold up to 16 percent of its weight," said Wei Gao, lead author of the paper and a graduate student in the Ajayan Lab.

"The fundamental breakthrough here is that GO, when it contains water, acts as an ionic conductor," said Ajayan, Rice's Benjamin M. and Mary Greenwood Anderson Professor in Mechanical Engineering and Materials Science and of chemistry. "So we're able to convert a sheet of GO into a supercapacitor without adding anything. All you need are a pattern and the electrodes, and you have a device. Of course the devices also perform in the presence of external electrolytes, which is even better.

"I think you're going to see a lot of tiny devices that need smaller power sources. Intermediate-sized devices might also be powered by this material; it's very scalable."

As a control experiment, the team sucked all the water out of an RGO-GO-RGO device in a vacuum to kill its ionic conductivity. Exposing it to air for three hours completely restored its supercapacitor function, another potentially handy characteristic.

To build a fully functional supercapacitor, conducting electrode materials need to be separated by an insulator that contains the electrolyte. When laser-written patterns of conducting RGO are separated by GO, the material becomes an energy storage device, Gao said. The patterns can be layered top and bottom or on the same plane.

In their experiments, heat from a laser at Rice's Oshman Engineering Design Kitchen sucked oxygen out of the surface to create the dark, porous RGO, which provided a level of resistance and restrained the GO-contained ions until their controlled release. Patterns were written in the GO with nearly one-micron accuracy.

Essentially, the devices exhibited good electrochemical performance -- without the chemicals.

Testing of the devices at Rice and by colleagues at the University of Delaware showed their performance compares favorably with existing thin-film micro-supercapacitors. They exhibit proton transport characteristics similar to that of Nafion, a commercial electrolyte membrane discovered in the 1960s, Ajayan said.

While the lab won't make flat supercapacitors in bulk anytime soon, Ajayan said the research opens the way to interesting possibilities, including devices for use in fuel cells and lithium batteries.

He said the discovery is surprising "because a lot of people have been looking at graphite oxide for five or 10 years now, and nobody has seen what we see here. We've discovered a fundamental mechanism of graphite oxide -- an ionic conducting membrane -- that is useful for applications."

Co-authors of the paper are graduate student Neelam Singh, former postdoctoral researcher Li Song and Lijie Ci, postdoctoral researcher Zheng Liu, research scientist Arava Leela Mohana Reddy and Robert Vajtai, a faculty fellow in mechanical engineering and materials science, all of Rice; and graduate student Qing Zhang and Binngqing Wei, an associate professor of mechanical engineering, both at the University of Delaware.

Nanoholdings LLC funded the research.

Read the abstract at http://www.nature.com/nnano/journal/vaop/ncurrent/abs/nnano.2011.110.html

View a video of the process at http://www.youtube.com/watch?v=3O4YV0mrkfQ

Download high-resolution art at
http://www.media.rice.edu/images/media/NEWSRELS/0728_Supercapacitor.jpg
http://www.media.rice.edu/images/media/NEWSRELS/0728_Supercapacitor_team.jpg
http://www.media.rice.edu/images/media/NEWSRELS/0728_Cover_dark_red.jpg
CAPTIONS:
(Supercapacitor)
Rice University graduate student Neelam Singh holds a supercapacitor made from a single sheet of graphite oxide. The heat from writing a pattern in the material with a laser turns it into electrically conducting reduced graphite oxide. (Credit: Jeff Fitlow/Rice University)

(Team)

A team of Rice University researchers in the lab of Professor Pulickel Ajayan made supercapacitors by burning patterns into graphite oxide with a laser. From left: graduate student Wei Gao; Robert Vajtai, a faculty fellow in mechanical engineering and materials science; graduate student Neelam Singh and postdoctoral researcher Arava Leela Mohana Reddy. (Credit: Jeff Fitlow/Rice University)

(Graphic)

Burning patterns into graphite oxide with a laser turns the thin sheets into fully functional supercapacitors, according to a new paper by Rice University scientists in Nature Nanotechnology. (Credit: Ajayan Lab/Rice University)

Located on a 285-acre forested campus in Houston, Texas, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is known for its "unconventional wisdom." With 3,485 undergraduates and 2,275 graduate students, Rice's undergraduate student-to-faculty ratio is less than 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice has been ranked No. 1 for best quality of life multiple times by the Princeton Review and No. 4 for "best value" among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://futureowls.rice.edu/images/futureowls/Rice_Brag_Sheet.pdf

David | EurekAlert!
Further information:
http://www.rice.edu

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>