Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Robot Inspects Wind Energy Converters

19.01.2009
The material of wind energy converters must withstand intense forces. Are rotor blades damaged? A new robot inspects wind energy converters more precisely than a human ever could. It detects the minutest damage – even below the surface.

It appears reliably and appears alone. Nimbly and quickly, it pulls itself up a rope meter for meter until it reaches a wind energy converter’s giant rotor blades. Then it goes to work. It thoroughly inspects every centimeter of the rotor blades’ surface. Nothing escapes it. It registers any crack and any delamination in the material and relays their exact positions. In this job, a robot is superior to humans.


The researchers at the Fraunhofer Institute for Factory Operation and Automation IFF are experts in robotics – regardless of whether to clean facades, inspect sewer lines or assist humans. Their latest helper is RIWEA, a robot that inspects the rotor blades of wind energy converters. Primarily made of glass fiber reinforced plastics, rotor blades have to withstand a great deal: wind, inertial forces, erosion, etc. Until now, humans have inspected wind energy converters at regular intervals – not an easy job.

After all, the technicians must closely examine large surfaces – a rotor blade can be up to 60 meters long – in airy heights. “Our robot is not just a good climber,” says Dr. Norbert Elkmann, Project Manager am Fraunhofer IFF and coordinator of the joint project. “It is equipped with a number of advanced sensor systems. This enables it to inspect rotor blades closely.” Are there cracks in the surface? Are the bonded joints and laminations in order? Is the bond with the central strut damaged?

The inspection system consists of three elements: An infrared radiator conducts heat to the surface of the rotor blades. A high-resolution thermal camera records the temperature pattern and thus registers flaws in the material. In addition, an ultrasonic system and a high resolution camera are also on board, thus enabling the robot to also detect damage that would remain hidden to the human eye. A specially developed carrier system ensures that the inspection robot is guided securely and precisely along the surface of a rotor blade.

“It is a highly complex platform with sixteen degrees of freedom, which can autonomously pull itself up ropes,” explains Elkmann. The advantage of this system: It can perform its job on any wind energy converter – regardlesss of whether it is large or small, on land or offshore. The robot always delivers an exact log of the rotor blades’ condition, keeping humans safe and not missing any damage.

Dr. Norbert Elkmann | alfa
Further information:
http://www.fraunhofer.de
http://www.fraunhofer.de/EN/press/pi/2009/01/ResearchNews012009Topic1.jsp

More articles from Power and Electrical Engineering:

nachricht Electromagnetic water cloak eliminates drag and wake
12.12.2017 | Duke University

nachricht Two holograms in one surface
12.12.2017 | California Institute of Technology

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>