Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Rainbow for the Palm of Your Hand

24.02.2012
In a single step, engineers create a rainbow-colored polymer that could open the door to portable, handheld multispectral imaging devices

University at Buffalo engineers have developed a one-step, low-cost method to fabricate a polymer with extraordinary properties: When viewed from a single perspective, the polymer is rainbow-colored, reflecting many different wavelengths of light.

Used as a filter for light, this material could form the basis of handheld multispectral imaging devices that identify the "true color" of objects examined.

"Such portable technology could have applications in a wide range of fields, from home improvement, like matching paint colors, to biomedical imaging, including analyzing colors in medical images to detect disease," said UB Vice President for Research and Economic Development Alexander N. Cartwright, one of the UB researchers who led the study.

The ease of producing the polymer could make it feasible to develop small devices that connect with cell phones to conduct multispectral imaging, said Qiaoqiang Gan, a UB assistant professor of electrical engineering and another member of the research team.

"Our method is pretty low-cost, and because of this and the potential cell phone applications, we feel there is a huge market for improving clinical imaging in developing countries," Gan said.

Because the colors of the rainbow filter are produced as a result of the filter's surface geometry, and not by some kind of pigment, the colors won't fade over time. (It's the same principle that gives color to the wings of butterflies and feather of peacocks.)

Cartwright and Gan's team reported on their polymer fabrication technique online Feb. 22 in Advanced Materials, an academic journal. Coauthors on the study also include UB students Ke Liu and Huina Xu and UB research scientist Haifeng Hu. An abstract is available here: http://bit.ly/zDK42U.

Images of Gan and Cartwright are available here: http://bit.ly/zCjfYF and http://bit.ly/xIh1yt.

The UB Office of Science, Technology Transfer and Economic Outreach (STOR) has submitted a provisional patent application detailing the production process to the U.S. Patent and Trademark Office.

To create the rainbow material, Liu and Xu sandwiched a photosensitive pre-polymer syrup between two glass slides. (A photosensitive substance is one whose physical properties change upon exposure to light.)

Next, they directed a laser beam through a curved lens placed above the pre-polymer solution. The lens divided and bent the laser beam into light of continuously varying wavelengths.

As this light hit the solution, monomers in the solution began joining into polymers, forming a continuous pattern of ridge-like polymer structures. Larger ridges rose where the light struck with more intensity.

The resulting structure is a thin filter that is rainbow-colored when viewed under white light. This is because the periodic polymer layers reflect a continuous spectrum of colors, from red on one end to indigo on the other.

The single-step fabrication method -- shining a laser light through a curved lens -- is affordable and relatively simple.

The filter the researchers created was about 25 millimeters long, but the technique they used is scalable: It's possible to create filters of different sizes by shining the laser through lenses of different sizes.

Gan said the next step for the researchers is to improve the quality of the rainbow filter. The team is also beginning to explore ideas for incorporating the technology into handheld devices.

Liu presented the results of this work with the rainbow-colored polymer grating as a post-deadline paper at IEEE Photonic Annual Meeting in Arlington, Va., in October 2011. The conference is considered one of the premier international events for optics and photonics.

Charlotte Hsu | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Power and Electrical Engineering:

nachricht Mission possible: This device will self-destruct when heated
22.05.2015 | University of Illinois at Urbana-Champaign

nachricht Gamma ray camera may help with Fukushima decontamination*
21.05.2015 | Waseda University

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: IoT-based Advanced Automobile Parking Navigation System

Development and implementation of an advanced automobile parking navigation platform for parking services

To fulfill the requirements of the industry, PolyU researchers developed the Advanced Automobile Parking Navigation Platform, which includes smart devices,...

Im Focus: First electrical car ferry in the world in operation in Norway now

  • Siemens delivers electric propulsion system and charging stations with lithium-ion batteries charged from hydro power
  • Ferry only uses 150 kilowatt hours (kWh) per route and reduces cost of fuel by 60 percent
  • Milestone on the road to operating emission-free ferries

The world's first electrical car and passenger ferry powered by batteries has entered service in Norway. The ferry only uses 150 kWh per route, which...

Im Focus: Into the ice – RV Polarstern opens the arctic season by setting course for Spitsbergen

On Tuesday, 19 May 2015 the research icebreaker Polarstern will leave its home port in Bremerhaven, setting a course for the Arctic. Led by Dr Ilka Peeken from the Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (AWI) a team of 53 researchers from 11 countries will investigate the effects of climate change in the Arctic, from the surface ice floes down to the seafloor.

RV Polarstern will enter the sea-ice zone north of Spitsbergen. Covering two shallow regions on their way to deeper waters, the scientists on board will focus...

Im Focus: Gel filled with nanosponges cleans up MRSA infections

Nanoengineers at the University of California, San Diego developed a gel filled with toxin-absorbing nanosponges that could lead to an effective treatment for skin and wound infections caused by MRSA (methicillin-resistant Staphylococcus aureus), an antibiotic-resistant bacteria. This "nanosponge-hydrogel" minimized the growth of skin lesions on mice infected with MRSA - without the use of antibiotics. The researchers recently published their findings online in Advanced Materials.

To make the nanosponge-hydrogel, the team mixed nanosponges, which are nanoparticles that absorb dangerous toxins produced by MRSA, E. coli and other...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International symposium: trends in spatial analysis and modelling for a more sustainable land use

20.05.2015 | Event News

15th conference of the International Association of Colloid and Interface Scientists

18.05.2015 | Event News

EHFG 2015: Securing health in Europe. Balancing priorities, sharing responsibilities

12.05.2015 | Event News

 
Latest News

Mesoporous Particles for the Development of Drug Delivery System Safe to Human Bodies

22.05.2015 | Materials Sciences

Computing at the Speed of Light

22.05.2015 | Information Technology

Development of Gold Nanoparticles That Control Osteogenic Differentiation of Stem Cells

22.05.2015 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>