Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A better way to pinpoint underground oil reserves

30.01.2009
CEE mapping technology could make extraction more efficient

Picture this: an accurate map of a large underground oil reservoir that can guide engineers' efforts to coax the oil from the vast rocky subsurface into wells where it can be pumped out for storage or transport.

Researchers in MIT's Department of Civil and Environmental Engineering have developed technology that can generate such a map, which has the potential to significantly increase the amount of oil extracted from reservoirs.

The new technology uses the digital image compression technique of JPEG to create realistic-looking, comprehensive maps of underground oil reservoirs using measurements from scattered oil wells. These maps would be the first to provide enough detail about an oil reservoir to guide oil recovery in the field in real time.

"Our simulation studies indicate that this innovative approach has the potential to improve current reservoir characterization techniques and to provide better predictions of oil-reservoir production. The hope is that better predictions ultimately lead to more efficient operations and increased oil production," said Behnam Jafarpour, a recent MIT graduate who is now an assistant professor in petroleum engineering at Texas A&M University.

Jafarpour and Dennis McLaughlin, the H.M. King Bhumibol Professor of Water Resource Management at MIT, published a pair of papers describing the technique that will appear in an upcoming issue of the Society of Petroleum Engineering Journal, as well as a third paper that appeared in the June 2008 issue of Computational Geosciences.

The spatial structure in geologic formations makes it possible to compress rock property maps. But JPEG compresses the many pixels in a detailed image down to a few essential pieces of information that require only a small amount of storage. In the oil reservoir characterization application developed by MIT researchers, a similar mechanism is used to provide concise descriptions of reservoir rock properties. The new technique uses oil flow rates and pressure data from oilfield wells to create a realistic image of the subsurface reservoir.

Petroleum extraction is expensive and relatively inefficient -- sometimes as little as one-third of the oil in a reservoir is actually recovered through pumping. So engineers rely on enhanced recovery techniques such as water flooding to mobilize the oil. To guide this work, they make real-time predictions of subsurface variables, including oil saturation and pressure, but they're essentially working blindly. The rock properties needed to make these predictions (for instance fluid conductivity of rock at a particular depth) can't be seen or measured.

Instead, engineers infer geologic properties indirectly from seismic data and measurements taken at scattered wells.

"In a typical reservoir, millions of pixels are needed to adequately describe the complex subsurface pathways that convey the oil to wells. Unfortunately, the number of seismic and well observations available for estimating these pixel values is typically very limited. The methods we've developed extract more information from those limited measurements to provide better descriptions of subsurface pathways and the oil moving through them," said McLaughlin, lead researcher on the project.

In a 36-month simulated oil-recovery process, McLaughlin and Jarfarpour's estimation approach accurately captured the main features and trends in fluid conductivity of a reservoir formation, demonstrating that the new technique is robust, accurate and efficient.

"Our next step -- already in progress -- is to test our idea in real oil reservoirs and evaluate its impact on oil recovery under realistic field settings," Jafarpour said.

Elizabeth Thomson | EurekAlert!
Further information:
http://www.mit.edu

More articles from Power and Electrical Engineering:

nachricht Researchers use light to remotely control curvature of plastics
23.03.2017 | North Carolina State University

nachricht TU Graz researchers show that enzyme function inhibits battery ageing
21.03.2017 | Technische Universität Graz

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>