Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Path to Better MTV-MOFs (multivariate metal organic frameworks)

09.08.2013
Berkeley Lab and UC Berkeley Researchers Develop Method for Predicting Adsorption in Carbon Dioxide-Scrubbing Materials

Scientists would like to apply the same principles by which baking soda removes food odors from refrigerators or silica powder keeps moisture away from electronic devices to scrub carbon dioxide from the exhaust gases of fossil fuel power plants.


Berkeley scientists have developed a method that accurately predicts the adsorptive properties of crystalline MTV-MOF systems.

An excellent candidate for this task is the class of materials known as multivariate metal organic frameworks or MTV-MOFs, which were discovered by Omar Yaghi, one of the world’s most cited chemists. However, finding and synthesizing the best MTV-MOFs for this task has been a major challenge. That discouraging state-of-affairs is about to change.

Yaghi and a team of researchers at Lawrence Berkeley National Laboratory (Berkeley Lab) and the University of California (UC)Berkeley that included Jeffrey Reimer and Berend Smit have developed a method that accurately predicts the adsorptive properties of crystalline MTV-MOF systems synthesized with different combinations of functional chemical groups.

“By combining solid-state nuclear magnetic resonance (NMR) measurements with molecular-level computational simulations we’ve identified a strategy for determining the underlying structure of MTV-MOFs that can help optimize function,” says Reimer, who holds joint appointments with Berkeley Lab’s Environmental Energy Technologies Division and UC Berkeley’s Chemical and Biomolecular Engineering Department and is an NMR expert. “Our method is a first step in resolving the more general problem of spatial disorder in other ordered materials, including mesoporous materials, functionalized polymers and defect distributions within crystalline solids.”

Reimer and Yaghi, now with Berkeley Lab’s Materials Sciences Division and UC Berkeley’s Chemistry Department, are the corresponding authors of a paper describing this research in Science titled “Mapping of Functional Groups in Metal-Organic Frameworks.” Co-authors are Xueqian Kong, Hexiang Deng, Fangyong Yan, Jihan Kim, Joseph Swisher and Berend Smit.

3D maps of MTV-MOF systems showing clusters, random and alternating functional group apportionments that govern CO2 capture.

3D maps of MTV-MOF systems showing clusters, random and alternating apportionments of functional groups that govern CO2 capture.

MOFs are crystalline molecular systems that can serve as storage vessels with a sponge-like capacity for capturing and containing carbon dioxide and other gases. They consist of a metal oxide center surrounded by organic “linker” molecules to form a highly porous three-dimensional crystal framework with an extraordinarily large internal surface area – sugar cube-sized MOF unfolded and flattened would blanket a football field.

In his seminal work, Yaghi discovered that multiple linkers with different functional groups can be incorporated into the same MOF crystal, creating a heterogeneous interior that can enhance selectivity for carbon dioxide capture relative to mixtures of pure materials.

“MTV-MOFs with different functionalities showed an increase in their ability to selectively separate carbon dioxide by two orders of magnitude compared to corresponding single-component MOFs,” Yaghi says.

The selectivity by which MTV-MOFs adsorb carbon dioxide, or some other specific type of gas, such as methane or hydrogen, is controlled by the combination of different types of linker functional groups and how those linker groups are spatially distributed or “apportioned” across the MOF’s crystal structure. However, such apportionment was not known and could not be determined through diffraction or other conventional scientific tools.

“The problem of linker distribution with MTV-MOF’s turns out to be an example of a larger problem in materials science, which is how does one quantify disorder when it is distributed upon a system that is governed by crystalline order,” Yaghi says. “In the case of MTV-MOFs, were it not for the differing functional groups on the linkers, all would exhibit the same regular crystalline order, which means diffraction methods cannot discern the apportionment of the linkers.”

To address the issue of discerning spatial apportionment within MTV-MOFs, Yaghi and Reimer and their respective research groups, joined forces with co-author Smit, director of Berkeley’s Energy Frontier Research Center and an international authority on molecular simulations. Smit also holds an appointment with Berkeley Lab’s Materials Sciences Division.

The research team used their NMR-computational approach to generate three-dimensional maps of the apportionment of functional groups within and between the pores of a model MTV-MOF system. They found that, depending on the composition of the functional groups and their ratios, MTV-MOFs exist in either clusters, random or alternating apportionments, and these apportionments govern the carbon dioxide adsorption selectivity that was observed in Yaghi’s earlier work.

“Our work portends the control of apportionment in MTV-MOFs so that we can now imagine synthesizing structures in which regions of different functionalities are apportioned and juxtaposed to ultimately carryout complex functions,” says Smit. “Our work also shows that a combined NMR-computational approach might be able to provide similar insights into the many other systems in nature where disorder precludes a molecular understanding of a material’s structure.”

Adds Yaghi, “It is our current vision to design and synthesize materials with crafted heterogeneity so as to carry out complex molecular operations such as recognizing, sorting and counting substrates.”

This research was supported through the Center for Gas Separations Relevant to Clean Energy Technologies, an Energy Frontier Research Center funded by the DOE Office of Science.

Additional Information

For more about the Center for Gas Separations Relevant to Clean Energy Technologies go here

Lawrence Berkeley National Laboratory addresses the world’s most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab’s scientific expertise has been recognized with 13 Nobel prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy’s Office of Science. For more, visit www.lbl.gov.

DOE’s Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit the Office of Science website at science.energy.gov/.

Lynn Yarris | EurekAlert!
Further information:
http://www.lbl.gov

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>