Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Noble yet Simple way to Synthesize New Metal-Free Electrocatalysts for Oxygen Reduction Reaction (ORR)

29.10.2013
A UNIST undergrad, Minju Park, and her research team found a new way to synthesize highly efficient electrocatalysts based on heteroatom-doped graphene nanosheets.

A Korean research team from Ulsan National Institute of Science and Technology (UNIST), S. Korea, developed a high performance and stable metal-free electrocatalyst for ORR and the research work was published in a science journal, Nanoscale by the Royal Society of Chemistry (RSC). (Title: gCovalent Functionalization Based Heteroatom Doped Graphene Nanosheet as a Metal-Free Electrocatalysts for Oxygen Reduction Reactionh)


Overall Scheme for doped graphene oxide
Copyright : UNIST

Limited availability of fossil fuel and increasing energy demands have stimulated intense research on energy conversion and storage systems. Fuel cells have received considerable attention among the many choices of energy storage systems, owing to their remarkable potential energy density and environmental issues.

Electrocatalysts for oxygen reduction are critical components that may dramatically enhance the performance of fuel cells, which are perceived to be the power for future electric vehicles. For more economical fuel cells, engineers need fast and efficient electrocatalysts which split hydrogen gas to make electricity.

The UNIST research team led by Prof. Byeong-Su Kim from the Interdisciplinary School of Green Energy, UNIST, presented a unique design and characterization of new heteroatom-doped graphene nanosheets prepared through the covalent functionalization of various small organic molecules with a subsequent thermal treatment. This work was proposed and carried out by undergraduate student Minju Park from the Interdisciplinary School of Green Energy, UNIST.

There are many available methods to prepare nitrogen-doped (N-doped) graphene. These approaches successfully introduce nitrogen atoms within the graphene framework. However, many of them require toxic gas precursors, and are unable to control the degree of doping and type of nitrogen functionality.

Herein the UNIST Research team presented a simple approach for chemical functionalization toward heteroatom-dope graphene nanosheets with small organic molecules for use as electrocatalysts for the oxygen reduction reaction.

Here is how the material has been prepared:
Graphite oxide powder was prepared from graphite powder with oxidation and exfoliated to give a brown dispersion of graphene oxide (GO) under ultra sonication. Graphene oxide nanosheets have various functional groups on the edge such as carboxylic (-COOH), hydroxyl (-OH), and epoxy (-C-O-C).

When the GO suspension reacted with amines in the presence of 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), a water soluble carbodiimide was usually obtained as the hydrochloride, carboxylic group in GO reacted with amine and formed an amide group. The research team defined it as eNGOnf, which was chemically functionalized graphene oxide. NGOn suspensions were annealed at 800 Ž for 1h under an argon atmosphere with tube furnace, and nitrogen was doped into the graphene oxide nanosheets with removing oxygen named eNRGOnf.

Further the UNIST research team demonstrated how the electrochemical performance can be improved by varying the degree and configurations of the nitrogen dopant. Further, they extended the approach toward the introduction of other heteroatoms, such as boron and sulfur, into the graphene nanosheet.

gNitrogen-doped graphene nanosheets showed superior stability compared to commercial Pt/C catalysts. This approach has also been successfully extended to other heteroatoms such as boron and sulfur on the graphene nanosheets,h said Minju Park.

gWe envision this study will offer opportunities and insights for further development of hybrid electrocatalysts,h said Prof. Kim, presenting future research possibilities.

This research work was supported by the National Research Foundation of Korea (NRF) grant.

For more information:
Ulsan National Institute of Science and Technology http://www.unist.ac.kr
Associate Professor Byeong-Su Kim, Interdisciplinary School of Green Energy, UNIST http://bskim19.unist.ac.kr
Journal information
Nanoscale
Funding information
National Research Foundation of Korea (NRF)

Eunhee Song | Research asia research news
Further information:
http://www.unist.ac.kr
http://www.researchsea.com

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>