Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new algorithm improves the efficiency of small wind turbines

18.03.2014

In recent years, mini wind energy has been developing in a spectacular way.

According to estimates by the WWEA-World Wind Energy Association, the level of development of the mini wind energy industry is not the same as that of the wind energy industry, although forecasts are optimistic. The main reason is that the level of efficiency of small wind turbines is low.

To address this problem, the UPV/EHU’s research group APERT (Applied Electronics Research Team) has developed an adaptative algorithm. The improvements that are applied to the control of these turbines will in fact contribute towards making them more efficient. The study has been published in the journal Renewable Energy.

Small wind turbines tend to be located in areas where wind conditions are more unfavourable. “The control systems of current wind turbines are not adaptative; in other words, the algorithms lack the capacity to adapt to new situations,” explained Iñigo Kortabarria, one of the researchers in the UPV/EHU’sAPERT research group.

That is why “the aim of the research was to develop a new algorithm capable of adapting to new conditions or to the changes that may take place in the wind turbine,” added Kortabarria. That way, the researchers have managed to increase the efficiency of wind turbines.

The speed of the wind and that of the wind turbine must be directly related if the latter is to be efficient. The same thing happens with a dancing partner. The more synchronised the rhythms of the dancers are, the more comfortable and efficient the dance is, and this can be noticed because the energy expenditure for the two partners is at a minimum level.

To put it another way, the algorithm specifies the way in which the wind turbine adapts to changes. This is what the UPV/EHU researchers have focussed on: the algorithm, the set of orders that the wind turbine will receive to adapt to wind speed.

“The new algorithm adapts to the environmental conditions and, what is more, it is more stable and does not move aimlessly. The risk that algorithms run is that of not adapting to the changes and, in the worst case scenario, that of making the wind turbine operate in very unfavourable conditions, thereby reducing its efficiency.

Efficiency is the aim

Efficiency is one of the main concerns in the mini wind turbine industry. One has to bear in mind that small wind turbines tend to be located in areas where wind conditions are more unfavourable. Large wind turbines are located in mountainous areas or on the coast; however, small ones are installed in places where the wind conditions are highly variable.

What is more, the mini wind turbine industry has few resources to devote to research and very often is unaware of the aerodynamic features of these wind turbines. All these aspects make it difficult to monitor the point of maximum power (MPPT Maximum Power Tracking) optimally.

“There has to be a direct relation between wind speed and wind turbine speed so that the monitoring of the maximum point of power is appropriate. It is important for this to be done optimally. Otherwise, energy is not produced efficiently,” explained Iñigo Kortabarria.

Most of the current algorithms have not been tested under the conditions of the wind that blows in the places where small wind turbines are located. That is why the UPV/EHU researchers have designed a test bench and have tested the algorithms that are currently being used —including the new algorithm developed in this piece of research— in the most representative conditions that could exist in the life of a wind turbine with this power.

“Current algorithms cannot adapt to changes, and therefore wind turbine efficiency is severely reduced, for example, when wind density changes," asserted Kortabarria.

“The experimental trials conducted clearly show that the capacity to adapt of the new algorithm improves energy efficiency when the wind conditions are variable,” explained Kortabarria.“ We have seen that under variable conditions, in other words, in the actual conditions of a wind turbine, the new algorithm will be more efficient than the existing ones."

Elektronika, Energia berriztagarriak, Ikerketa-zentroak, Ingeniaritza, Matematika, Unibertsitateak

Notes

The Applied Electronics Research Team APERT comprises lecturers and researchers in the Electronics Technology area of the Department of Electronics Technology. They all carry out their activities at the Faculty of Engineering in Bilbao (UPV/EHU).They have two main lines of research: the line of reconfigurable circuits and systems-on-a-chip, and the line of power control circuits for energy converters. This line is based on the use of the latest, high-capacity FPGAs to incorporate digital systems into a single integrated circuit. Furthermore, the advances achieved are applied to specific needs emerging in the other areas of research the APERT works on. The second line of research is geared towards the design and study of the behaviour of power electronics systems used in the process to generate, transform and store electrical power and its application to renewable energy sources. In addition, this second line of research is sponsored by the collaboration agreement which the APERT group has signed with the Tecnalia Research & Innovation foundation.

Internet reference

www.ehu.es

References

I.Kortabarria, J. Andreu, I. Martínez de Alegría, J. Jiménez, J.I. Gárate, E. Robles. “A novel adaptative maximum power point tracking algorithm for small wind turbines”. (2014) Renewable Energy 63: 785-796 http://www.sciencedirect.com/science/article/pii/S0960148113005673

Oihane Lakar | EurekAlert!

More articles from Power and Electrical Engineering:

nachricht How protons move through a fuel cell
22.06.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Fraunhofer IZFP acquires lucrative EU project for increasing nuclear power plant safety
21.06.2017 | Fraunhofer-Institut für Zerstörungsfreie Prüfverfahren IZFP

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>