Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A new algorithm improves the efficiency of small wind turbines

18.03.2014

In recent years, mini wind energy has been developing in a spectacular way.

According to estimates by the WWEA-World Wind Energy Association, the level of development of the mini wind energy industry is not the same as that of the wind energy industry, although forecasts are optimistic. The main reason is that the level of efficiency of small wind turbines is low.

To address this problem, the UPV/EHU’s research group APERT (Applied Electronics Research Team) has developed an adaptative algorithm. The improvements that are applied to the control of these turbines will in fact contribute towards making them more efficient. The study has been published in the journal Renewable Energy.

Small wind turbines tend to be located in areas where wind conditions are more unfavourable. “The control systems of current wind turbines are not adaptative; in other words, the algorithms lack the capacity to adapt to new situations,” explained Iñigo Kortabarria, one of the researchers in the UPV/EHU’sAPERT research group.

That is why “the aim of the research was to develop a new algorithm capable of adapting to new conditions or to the changes that may take place in the wind turbine,” added Kortabarria. That way, the researchers have managed to increase the efficiency of wind turbines.

The speed of the wind and that of the wind turbine must be directly related if the latter is to be efficient. The same thing happens with a dancing partner. The more synchronised the rhythms of the dancers are, the more comfortable and efficient the dance is, and this can be noticed because the energy expenditure for the two partners is at a minimum level.

To put it another way, the algorithm specifies the way in which the wind turbine adapts to changes. This is what the UPV/EHU researchers have focussed on: the algorithm, the set of orders that the wind turbine will receive to adapt to wind speed.

“The new algorithm adapts to the environmental conditions and, what is more, it is more stable and does not move aimlessly. The risk that algorithms run is that of not adapting to the changes and, in the worst case scenario, that of making the wind turbine operate in very unfavourable conditions, thereby reducing its efficiency.

Efficiency is the aim

Efficiency is one of the main concerns in the mini wind turbine industry. One has to bear in mind that small wind turbines tend to be located in areas where wind conditions are more unfavourable. Large wind turbines are located in mountainous areas or on the coast; however, small ones are installed in places where the wind conditions are highly variable.

What is more, the mini wind turbine industry has few resources to devote to research and very often is unaware of the aerodynamic features of these wind turbines. All these aspects make it difficult to monitor the point of maximum power (MPPT Maximum Power Tracking) optimally.

“There has to be a direct relation between wind speed and wind turbine speed so that the monitoring of the maximum point of power is appropriate. It is important for this to be done optimally. Otherwise, energy is not produced efficiently,” explained Iñigo Kortabarria.

Most of the current algorithms have not been tested under the conditions of the wind that blows in the places where small wind turbines are located. That is why the UPV/EHU researchers have designed a test bench and have tested the algorithms that are currently being used —including the new algorithm developed in this piece of research— in the most representative conditions that could exist in the life of a wind turbine with this power.

“Current algorithms cannot adapt to changes, and therefore wind turbine efficiency is severely reduced, for example, when wind density changes," asserted Kortabarria.

“The experimental trials conducted clearly show that the capacity to adapt of the new algorithm improves energy efficiency when the wind conditions are variable,” explained Kortabarria.“ We have seen that under variable conditions, in other words, in the actual conditions of a wind turbine, the new algorithm will be more efficient than the existing ones."

Elektronika, Energia berriztagarriak, Ikerketa-zentroak, Ingeniaritza, Matematika, Unibertsitateak

Notes

The Applied Electronics Research Team APERT comprises lecturers and researchers in the Electronics Technology area of the Department of Electronics Technology. They all carry out their activities at the Faculty of Engineering in Bilbao (UPV/EHU).They have two main lines of research: the line of reconfigurable circuits and systems-on-a-chip, and the line of power control circuits for energy converters. This line is based on the use of the latest, high-capacity FPGAs to incorporate digital systems into a single integrated circuit. Furthermore, the advances achieved are applied to specific needs emerging in the other areas of research the APERT works on. The second line of research is geared towards the design and study of the behaviour of power electronics systems used in the process to generate, transform and store electrical power and its application to renewable energy sources. In addition, this second line of research is sponsored by the collaboration agreement which the APERT group has signed with the Tecnalia Research & Innovation foundation.

Internet reference

www.ehu.es

References

I.Kortabarria, J. Andreu, I. Martínez de Alegría, J. Jiménez, J.I. Gárate, E. Robles. “A novel adaptative maximum power point tracking algorithm for small wind turbines”. (2014) Renewable Energy 63: 785-796 http://www.sciencedirect.com/science/article/pii/S0960148113005673

Oihane Lakar | EurekAlert!

More articles from Power and Electrical Engineering:

nachricht Did you know that the wrapping of Easter eggs benefits from specialty light sources?
13.04.2017 | Heraeus Noblelight GmbH

nachricht To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
05.04.2017 | Carnegie Institution for Science

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>