Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A measurement first: NIST 'noise thermometry' system measures Boltzmann Constant

01.04.2011
Researchers at the National Institute of Standards and Technology (NIST) have for the first time used an apparatus that relies on the "noise" of jiggling electrons to make highly accurate measurements of the Boltzmann constant, an important value for many scientific calculations. The technique is simpler and more compact than other methods for measuring the constant and could advance international efforts to revamp the world's scientific measurement system.

The Boltzmann constant* relates energy to temperature for individual particles such as atoms. The accepted value of this constant is based mainly on a 1988 NIST measurement performed using acoustic gas thermometry, with a relative standard uncertainty of less than 2 parts per million (ppm).

The technique is highly accurate but the experiment is complex and difficult to perform. To assure that the Boltzmann constant can be determined accurately around the world, scientists have been trying to develop different methods that can reproduce this value with comparable uncertainty.

The latest NIST experiment used an electronic technique called Johnson noise thermometry (JNT) to measure the Boltzmann constant with an uncertainty of 12 ppm.** The results are consistent with the currently recommended value for this constant. NIST researchers aim to make additional JNT measurements with improved uncertainties of 5 ppm or less, a level of precision that would help update crucial underpinnings of science, including the definition of the Kelvin, the international unit of temperature.

The international metrology community is expected to soon fix the value of the Boltzmann constant, which would then redefine the Kelvin as part of a larger effort to link all units to fundamental constants.*** This approach would be the most stable and universal way to define measurement units, in contrast to traditional measurement unit standards based on physical objects or substances. The Kelvin is now defined in terms of the triple-point temperature of water (273.16 K, or about 0 degrees C and 32 degrees F), or the temperature and pressure at which water's solid, liquid and vapor forms coexist in balance. This value may vary slightly depending on chemical impurities.

The NIST JNT system measures very small electrical noise in resistors, a common electronic component, when they are cooled to the water triple point temperature. This "Johnson noise" is created by the random motion of electrons, and the signals they generate are directly proportional to temperature. The electronic devices measuring the noise power are calibrated with electrical signals synthesized by a superconducting voltage source based on fundamental principles of quantum mechanics. This unique feature enables the JNT system to match electrical power and thermal-noise power at the triple point of water, and assures that copies of the system will produce identical results. NIST researchers recently improved the apparatus to reduce the statistical uncertainty, systematic errors and electromagnetic interference. Additional improvements in the electronics are expected to further reduce measurement uncertainties.

The new measurements were made in collaboration with guest researchers from the Politecnico di Torino, Italy; the National Institute of Metrology, China; the University of Twente, The Netherlands; the National Metrology Institute of Japan, Tsukuba, Japan; and the Measurement Standards Laboratory, New Zealand.

* The currently accepted value of the Boltzmann Constant is 1.380 6504 x 10-23 joules/kelvin.

** S.P. Benz, A. Pollarolo, J. Qu, H. Rogalla, C. Urano, W.L. Tew, P.D. Dresselhaus and D.R. White. An electronic measurement of the Boltzmann Constant. Metrologia. Published online March 30, 2011.

*** See the Oct. 26, 2010, NIST Tech Beat article, "'Sí' on the New SI: NIST Backs Proposal for a Revamped System of Measurement Units," at http://www.nist.gov/public_affairs/tech-beat/tb20101026.cfm#SI

Laura Ost | EurekAlert!
Further information:
http://www.nist.gov

More articles from Power and Electrical Engineering:

nachricht Laser sensor LAH-G1 - optical distance sensors with measurement value display
15.08.2017 | WayCon Positionsmesstechnik GmbH

nachricht Engineers find better way to detect nanoparticles
14.08.2017 | Washington University in St. Louis

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>