Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A Light Touch May Help Animals and Robots Move on Sand and Snow

12.10.2015

Having a light touch can make a hefty difference in how well animals and robots move across challenging granular surfaces such as snow, sand and leaf litter. Research reported October 9 in the journal Bioinspiration & Biomimetics shows how the design of appendages – whether legs or wheels – affects the ability of both robots and animals to cross weak and flowing surfaces.

Using an air fluidized bed trackway filled with poppy seeds or glass spheres, researchers at the Georgia Institute of Technology systematically varied the stiffness of the ground to mimic everything from hard-packed sand to powdery snow.


Credit: John Toon, Georgia Tech

Sandbot, a bio-inspired hexapedal robot, is shown in a trackway filled with poppy seeds to simulate various granular surfaces. The robot was used to study how the stiffness of a loosely-packed surface affects the ability to move across it.

By studying how running lizards, geckos, crabs – and a robot – moved through these varying surfaces, they were able to correlate variables such as appendage design with performance across the range of surfaces.

The key measure turned out to be how far legs or wheels penetrated into the surface. What the scientists learned from this systematic study might help future robots avoid getting stuck in loose soil on some distant planet.

... more about:
»Laboratory »Robots »crabs »surfaces

“You need to know systematically how ground properties affect your performance with wheel shape or leg shape, so you can rationally predict how well your robot will be able to move on the surfaces where you have to travel,” said Dan Goldman, a professor in the Georgia Tech School of Physics. “When the ground gets weak, certain animals seem to still be able to move around independently of the surface properties. We want to understand why.”

The research was supported by National Science Foundation, Army Research Laboratory and Burroughs Wellcome Fund.

For years, Goldman and colleagues have been using trackways filled with granular media to study the locomotion of animals and robots, but in the past, they had used the fluidized bed only to set the initial compaction of the media. In this study, however, they used variations in continuous air flow – introduced through the bottom of the device – to vary the substrate’s resistance to penetration by a leg or wheel.

Goldman compares the trackway to the wind tunnels used for aerodynamic studies.

“By varying the air flow, we can create ground that is very, very weak – so that you sink into it quite easily, like powdery snow, and we can have ground that is very strong, like sand,” he explained. “This gives us the ability to study the mechanism by which animals and robots either succeed or fail.”

Using a bio-inspired hexapedal robot known as Sandbot as a physical model, the researchers studied average forward speed as a factor of ground penetration resistance – the “stiffness” of the sand – and the frequency of leg movement. The average speed of the robot declined as the increased air flow through the trackway made the surface weaker. Increasing the leg frequency makes the speed decrease more rapidly with increasing air flow.

The five animals – with different body plans and appendage features – all did better than the robot, with the best performer being a lizard collected in a California desert. The speed of the C. draconoides wasn’t slowed at all as the surface became easier to penetrate, while other animals saw performance losses of between 20 and 50 percent on the loosening surfaces.

“We think that this particular lizard is well suited to the variety of terrain because it has these ridiculously long feet and toes,” Goldman said. “These feet and toes really enable it to maintain high performance and reduce its penetration into the surface over a wide range of substrate conditions. On the other hand, we see animals like ghost crabs that experience a tremendous loss of performance as the substrate changes, something that was surprising to us.”

The robot lost 70 percent of its speed even with wheels designed to lighten its pressure on the surface.

Skiers and beachcombers can certainly understand why. As the surface becomes easier for a ski or foot to penetrate, more energy is required to move and forward progress slows. Human and skiers haven’t evolved solutions to that problem, but desert-dwelling creatures have. The research, Goldman says, will help us understand how they do it.

“The magic for us is how the animals are so good at this,” he said. “There’s a clear practical application to this. If you can get the controls and morphology right, you could have a robot that could move anywhere, but you have to know what you are doing under different conditions.”

As part of the research, Georgia Tech graduate students Feifei Qian and Tingnan Zhang used a terradynamics approach based on resistive force theory to perform numerical simulations of the robots and animals. They found that their model successfully predicted locomotor performance for low resistance granular states.

“This work expands the general applicability of our resistive force theory of terradynamics,” said Goldman. “The resistive force theory, which allows us to compute forces on limbs intruding into the ground, continues to work even in situations where we didn’t think it would work. It expands the applicability of terradynamics to even weaker states of material.”

In addition to those already mentioned, co-authors include Wyatt Korff from the Howard Hughes Medical Institute in Virginia, Paul Umbanhowar from Northwest University, and Robert Full from the University of California at Berkeley.

This research was supported by the Burroughs Wellcome Fund and by the Army Research Laboratory (ARL) Micro Autonomous Systems and Technology (MAST) Collaborative Technology Alliance (CTA) under cooperative agreement number W911NF-08-2-0004, and by the National Science Foundation Physics of Living Systems CAREER and Student Research Network and ARO Grant No. W911NF-11-1-0514. Any or opinions expressed are those of the authors and do not necessarily reflect the official views of the sponsoring agencies.

CITATION: Feifei Qian, et al., “Principles of appendage design in robots and animals determining terradynamic performance on flowable ground,” (Bioinspiration & Biomimetics, 2015). http://dx.doi.org/10.1088/1748-3190/10/5/056014

Contact Information
John Toon
Director, Research News
Georgia Institute of Technology
jtoon@gatech.edu
Phone: 404-894-6986

John Toon | newswise

Further reports about: Laboratory Robots crabs surfaces

More articles from Power and Electrical Engineering:

nachricht A big nano boost for solar cells
18.01.2017 | Kyoto University and Osaka Gas effort doubles current efficiencies

nachricht Multiregional brain on a chip
16.01.2017 | Harvard John A. Paulson School of Engineering and Applied Sciences

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>