Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

A greener way to get electricity from natural gas

07.12.2009
Proposed system uses solid-oxide fuel cells to produce power without sending greenhouse gases into the atmosphere

A new type of natural-gas electric power plant proposed by MIT researchers could provide electricity with zero carbon dioxide emissions to the atmosphere, at costs comparable to or less than conventional natural-gas plants, and even to coal-burning plants.

But that can only come about if and when a price is set on the emission of carbon dioxide and other greenhouse gases — a step the U.S. Congress and other governments are considering as a way to halt climate change.

Postdoctoral associate Thomas Adams and Paul I. Barton, the Lammot du Pont Professor of Chemical Engineering, propose a system that uses solid-oxide fuel cells, which produce power from fuel without burning it. The system would not require any new technology, but would rather combine existing components, or ones that are already well under development, in a novel configuration (for which they have applied for a patent).

The system would also have the advantage of running on natural gas, a relatively plentiful fuel source — proven global reserves of natural gas are expected to last about 60 years at current consumption rates — that is considered more environmentally friendly than coal or oil. (Present natural-gas power plants produce an average of 1,135 pounds of carbon dioxide for every megawatt-hour of electricity produced — half to one-third the emissions from coal plants, depending on the type of coal.)

Absent any price for carbon emissions, Adams says, when it comes to generating electricity “the cheapest fuel will always be pulverized coal.” But as soon as there is some form of carbon pricing — which attempts to take into account the true price exacted on the environment by greenhouse gas emissions — “ours is the lowest price option,” he says, as long as the pricing is more than about $15 per metric ton of emitted carbon dioxide. Such a pricing mechanism would be put in place, for example, by the Waxman-Markey “American Clean Energy and Security Act” that was passed by the U.S. House of Representatives in July, through its “cap and trade” provisions. (A corresponding bill has not yet reached the floor of the U.S. Senate.) If the program becomes law, the actual price per ton of carbon would vary, being determined through the free market.

Natural gas already accounts for 22 percent of all U.S. electricity production, and that percentage is likely to rise in coming years if carbon prices are put into effect. For these and other reasons, a system that can produce electricity from natural gas at a competitive price with zero greenhouse gas emissions could prove to be an attractive alternative to conventional power plants that use fossil fuels.

The system proposed by Adams and Barton would not emit into the air any carbon dioxide or other gases believed responsible for global warming, but would instead produce a stream of mostly pure carbon dioxide. This stream could be harnessed and stored underground relatively easily, a process known as carbon capture and sequestration (CCS). One additional advantage of the proposed system is that, unlike a conventional natural gas plant with CCS that would consume significant amounts of water, the fuel-cell based system actually produces clean water that could easily be treated to provide potable water as a side benefit, Adams says.

How they did it: Adams and Barton used computer simulations to analyze the relative costs and performance of this system versus other existing or proposed generating systems, including natural gas or coal-powered systems incorporating carbon capture technologies.

Combined-cycle natural gas plants — the most efficient type of fossil-fuel power plants in use today — could be retrofitted with a carbon-capture system to reduce the output of greenhouse gases by 90 percent. But the MIT researchers’ study found that their proposed system could eliminate virtually 100 percent of these emissions, at a comparable cost for the electricity produced, and with even a higher efficiency (in terms of the amount of electricity produced from a given amount of fuel).

Next steps: Although no full-scale plants using such systems have yet been built, the basic principles have been demonstrated in a number of smaller units including a 250-kilowatt plant, and prototype megawatt-scale plants are planned for completion around 2012. Actual utility-scale power plants would likely be on the order of 500 megawatts, Adams says. And because fuel cells, unlike conventional turbine-based generators, are inherently modular, once the system has been proved at small size it can easily be scaled up. “You don’t need one large unit,” Adams explains. “You can do hundreds or thousands of small ones, run in parallel.” Adams says practical application of such systems is “not very far away at all,” and could probably be ready for commercialization within a few years. “This is near-horizon technology,” he says.

Source: Journal of Power Sources: “High-efficiency power production from natural gas with carbon capture”

Funding: The research was partly funded from the BP-MIT Conversion Research Program

Jen Hirsch | EurekAlert!
Further information:
http://www.mit.edu

More articles from Power and Electrical Engineering:

nachricht Harvesting the Sun for Power and Produce
24.11.2017 | Fraunhofer-Institut für Solare Energiesysteme ISE

nachricht Batteries with better performance and improved safety
23.11.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Power and Electrical Engineering >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

IceCube experiment finds Earth can block high-energy particles from nuclear reactions

24.11.2017 | Physics and Astronomy

A 'half-hearted' solution to one-sided heart failure

24.11.2017 | Health and Medicine

Heidelberg Researchers Study Unique Underwater Stalactites

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>